(Galidakis 2004). Then for ,
is entire with series expansion:
(7)
Similarly, for ,
is analytic for
in the domain of the principal branch of , with series expansion:
(8)
For , and ,
(9)
For , and , and
(10)
The value of the infinite power tower , where is an abbreviation for , can be computed analytically by writing
(11)
taking the logarithm of both sides and plugging back in to obtain
(12)
Solving for
gives
(13)
where
is the Lambert W-function (Corless et al.
1996).
converges iff (; OEIS A073230
and A073229), as shown by Euler (1783) and
Eisenstein (1844) (Le Lionnais 1983; Wells 1986, p. 35).
converges only for ,
that is,
(OEIS A072364). The value it converges to is
the inverse of
which can be found by taking the logarithm of both sides of (19),
(20)
rearranging to
(21)
and then substituting to obtain
(22)
Solving the resulting equation for then gives the partial solution
(OEIS A083648 and A073009; Spiegel 1968; Abramowitz and Stegun 1972; Havil 2003, pp. 44-45; Borwein et
al. 2004, p. 5). Borwein et al. (2004, pp. 5 and 44) call these
two integrals "a sophomore's dream."
The function
is plotted above along the real line and in the complex plane, where it shows beautiful
structure.
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, 1972.Ash, J. M. "The Limit of as Tends to Infinity." Math. Mag.69, 207-209,
1996.Baker, I. N. and Rippon, P. J. "Convergence of Infinite
Exponentials." Ann. Acad. Sci. Fennicæ Ser. A. I. Math.8,
179-186, 1983.Baker, I. N. and Rippon, P. J. "Iteration
of Exponential Functions." Ann. Acad. Sci. Fennicæ Ser. A. I. Math.9,
49-77, 1984.Baker, I. N. and Rippon, P. J. "A Note on
Complex Iteration." Amer. Math. Monthly92, 501-504, 1985.Barrow,
D. F. "Infinite Exponentials." Amer. Math. Monthly43,
150-160, 1936.Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation
in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters,
pp. 61-62, 2004.Corless, R. M.; Gonnet, G. H.; Hare,
D. E. G.; Jeffrey, D. J.; and Knuth, D. E. "On the Lambert
Function." Adv. Comput. Math.5,
329-359, 1996.Creutz, M. and Sternheimer, R. M. "On the Convergence
of Iterated Exponentiation, Part I." Fib. Quart.18, 341-347,
1980.Creutz, M. and Sternheimer, R. M. "On the Convergence
of Iterated Exponentiation, Part II." Fib. Quart.19, 326-335,
1981.de Villiers, J. M. and Robinson, P. N. "The Interval
of Convergence and Limiting Functions of a Hyperpower Sequence." Amer. Math.
Monthly93, 13-23, 1986.Eisenstein, G. "Entwicklung
von ." J.
reine angew. Math.28, 49-52, 1844.Elstrodt, J. "Iterierte
Potenzen." Math. Semesterber.41, 167-178, 1994.Euler,
L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta
Acad. Scient. Petropol.2, 29-51, 1783. Reprinted in Euler, L. Opera
Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. pp. 350-369.Finch,
S. R. "Iterated Exponential Constants." §6.11 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 448-452,
2003.Galidakis, I. N. "On An Application of Lambert's Function to Infinite Exponentials."
Complex Variables Th. Appl.49, 759-780, 2004.Ginsburg,
J. "Iterated Exponentials." Scripta Math.11, 340-353, 1945.Havil,
J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Khovanskii,
A. N. The
Application of Continued Fractions and Their Generalizations to Problems in Approximation
Theory. Groningen, Netherlands: P. Noordhoff, 1963.Knoebel,
R. A. "Exponentials Reiterated." Amer. Math. Monthly88,
235-252, 1981.Knuth, D. E. "Mathematics and Computer Science:
Coping with Finiteness. Advances in our Ability to Compute are Bringing us Substantially
Closer to Ultimate Limitations." Science194, 1235-1242, 1976.Länger,
H. "An Elementary Proof of the Convergence of Iterated Exponentials." Elem.
Math.51, 75-77, 1996.Le Lionnais, F. Les
nombres remarquables. Paris: Hermann, pp. 22 and 39, 1983.Macdonnell,
J. "Some Critical Points on the Hyperpower Function ." Int. J. Math.
Educ. Sci. Technol.20, 297-305, 1989.Macintyre, A. J.
"Convergence of ."
Proc. Amer. Math. Soc.17, 67, 1966.Mauerer, H. "Über
die Funktion
für ganzzahliges Argument (Abundanzen)." Mitt. Math. Gesell. Hamburg4,
33-50, 1901.Meyerson, M. D. "The Spindle." Math. Mag.69, 198-206, 1996.Rippon,
P. J. "Infinite Exponentials." Math. Gaz.67, 189-196,
1983.Rucker, R. Infinity
and the Mind: The Science and Philosophy of the Infinite. Princeton, NJ:
Princeton University Press, 1995.Sloane, N. J. A. Sequences
A072364, A073226,
A073229, A073230,
A077589, A077590,
A083648, and A073009
in "The On-Line Encyclopedia of Integer Sequences."Spiegel,
M. R. Mathematical
Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.Trott,
M. The
Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.Vardi,
I. Computational
Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 11-12 and
226-229, 1991.Weber, R. O. and Roumeliotis, J. "^^^^...." Austral. Math. Soc. Gaz.22, 182-184,
1995.Wells, D. The
Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England:
Penguin Books, p. 35, 1986.