A Pierpont prime is a prime number of the form . The first few Pierpont
primes are 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577,
769, ... (OEIS A005109).
where ,
, ..., are distinct Pierpont primes and (Gleason 1998).
The numbers of Pierpont primes less than , , ... are 4, 10, 18, 25, 32, 42, 50, 58, ... (OEIS A113420)
and the number less than ,
, , , ... are 4, 10, 25, 58, 125, 250, 505, 1020, 2075, 4227,
... (OEIS A113412; Caldwell).
Caldwell, C. "Pierpont primes." primeform posting, Oct. 25, 2005. http://groups.yahoo.com/group/primeform/message/6588/.Cox,
D. A. and Shurman, J. "Geometry and Number Theory on Clovers." Amer.
Math. Monthly112, 682-704, 2005.Gleason, A. M. "Angle
Trisection, the Heptagon, and the Triskaidecagon." Amer. Math. Monthly95,
185-194, 1988.Guy, R. K. §A18 in Unsolved
Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Martin,
G. E Geometric
Constructions. New York: Springer, 1998.Pierpont, J. "On
an Undemonstrated Theorem of the Disquisitiones Arithmeticae." Bull. Amer.
Math. Soc.2, 77-83, 1895-1896.Sloane, N. J. A.
Sequences A005109/M0673, A113412,
and A113420 in "The On-Line Encyclopedia
of Integer Sequences."