[go: up one dir, main page]

TOPICS
Search

Lemniscate Constant


Let

 s=1/(sqrt(2pi))[Gamma(1/4)]^2=5.2441151086...
(1)

(OEIS A064853) be the arc length of a lemniscate with a=1. Then the lemniscate constant is the quantity

L=1/2s
(2)
=int_0^pi(dtheta)/(sqrt(1+sin^2theta))
(3)
=2int_0^1(dx)/(sqrt(1-x^4))
(4)
=piG
(5)
=pi/(M(1,sqrt(2)))
(6)
=2K(i)
(7)
=sqrt(2)K(1/(sqrt(2)))
(8)
=([Gamma(1/4)]^2)/(2sqrt(2pi))
(9)
=pitheta_4^2(e^(-pi))
(10)
=(3pi)/(2R_D(0,2,1))
(11)
=2R_F(0,1,2)
(12)
=piR_K(1,2)
(13)
=2.62205755429...
(14)

(OEIS A062539; Abramowitz and Stegun 1972; Finch 2003, p. 420), where G is Gauss's constant, M(a,b) is the arithmetic-geometric mean, theta_4(q) is a theta_4 is a Jacobi theta function, K(k) is a complete elliptic integral of the first kind, and R_D, R_F, and R_K are Carlson elliptic integrals. Todd (1975) cites T. Schneider as proving L to be a transcendental number in 1937.

The quantity

L_1=1/2L
(15)
=int_0^1(dx)/(sqrt(1-x^4))
(16)
=1.311028777...
(17)

(OEIS A085565; Le Lionnais 1983) is sometimes known as the first lemniscate constant, while

L_2=int_0^1(x^2)/(sqrt(1-x^4))dx
(18)
=pi/(2L)
(19)
=1/(2G)
(20)
=0.5990701173...
(21)

(OEIS A076390), where G is Gauss's constant, is sometimes known as the second lemniscate constant (Todd 1975, Gosper 1976, Lewanowicz and Paszowski 1995).


See also

Gamma Function, Lemniscate, Lemniscate Case, Pseudolemniscate Case

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.Finch, S. R. "Gauss' Lemniscate Constant." §6.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 420-423, 2003.Gosper, R. W. "A Calculus of Series Rearrangements." In Algorithms and Complexity: New Directions and Recent Results. Proc. 1976 Carnegie-Mellon Conference (Ed. J. F. Traub). New York: Academic Press, pp. 121-151, 1976.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 37, 1983.Levin, A. "A Geometric Interpretation of an Infinite Product for the Lemniscate Constants." Amer. Math. Monthly 113, 510-520, 2006.Lewanowicz, S. and Paszowski, S. "An Analytic Method for Convergence Acceleration of Certain Hypergeometric Series." Math. Comput. 64, 691-713, 1995.Sloane, N. J. A. Sequences A062539, A064853, A076390, and A085565 in "The On-Line Encyclopedia of Integer Sequences."Todd, J. "The Lemniscate Constant." Comm. ACM 18, 14-19 and 462, 1975.

Referenced on Wolfram|Alpha

Lemniscate Constant

Cite this as:

Weisstein, Eric W. "Lemniscate Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LemniscateConstant.html

Subject classifications