Let
(1)
(OEIS A064853 ) be the arc length of a lemniscate with . Then the lemniscate constant is the quantity
(OEIS A062539 ; Abramowitz and Stegun 1972; Finch 2003, p. 420), where is Gauss's constant , is the arithmetic-geometric
mean ,
is a
is a Jacobi theta function , is a complete
elliptic integral of the first kind , and , , and are Carlson elliptic
integrals . Todd (1975) cites T. Schneider as proving to be a transcendental
number in 1937.
The quantity
(OEIS A085565 ; Le Lionnais 1983) is sometimes
known as the first lemniscate constant, while
(OEIS A076390 ), where is Gauss's constant , is
sometimes known as the second lemniscate constant (Todd 1975, Gosper 1976, Lewanowicz
and Paszowski 1995).
See also Gamma Function ,
Lemniscate ,
Lemniscate Case ,
Pseudolemniscate
Case
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, 1972. Borwein, J. M. and Borwein, P. B. Pi
& the AGM: A Study in Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987. Finch, S. R. "Gauss' Lemniscate Constant."
§6.1 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 420-423,
2003. Gosper, R. W. "A Calculus of Series Rearrangements."
In Algorithms
and Complexity: New Directions and Recent Results. Proc. 1976 Carnegie-Mellon Conference
(Ed. J. F. Traub). New York: Academic Press, pp. 121-151, 1976. Le
Lionnais, F. Les
nombres remarquables. Paris: Hermann, p. 37, 1983. Levin,
A. "A Geometric Interpretation of an Infinite Product for the Lemniscate Constants."
Amer. Math. Monthly 113 , 510-520, 2006. Lewanowicz, S.
and Paszowski, S. "An Analytic Method for Convergence Acceleration of Certain
Hypergeometric Series." Math. Comput. 64 , 691-713, 1995. Sloane,
N. J. A. Sequences A062539 , A064853 ,
A076390 , and A085565
in "The On-Line Encyclopedia of Integer Sequences." Todd, J.
"The Lemniscate Constant." Comm. ACM 18 , 14-19 and 462, 1975. Referenced
on Wolfram|Alpha Lemniscate Constant
Cite this as:
Weisstein, Eric W. "Lemniscate Constant."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/LemniscateConstant.html
Subject classifications