Skip to main content
Background Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health... more
Background Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In
This article focuses the recovery of prokaryotic organisms including bacteria and archaea from 9 different groups of chicken raised in different farm setups in Pakistan. The groups comprise of three different breeds (Broilers, White... more
This article focuses the recovery of prokaryotic organisms including bacteria and archaea from 9 different groups of chicken raised in different farm setups in Pakistan. The groups comprise of three different breeds (Broilers, White Layers, and Black Australorp) of chicken raised in different farming setups that include antibiotic-free control, commercial (open and controlled shed), and backyard farms. We have recovered 569 Metagenomics-Assembled Genomes (MAGs) with a completeness of ≥50 % and contamination of ≤10 %. For each MAG, functional annotations were obtained that include KEGG modules, carbohydrate active enzymes (CAZymes), peptidases, geochemical cycles, antibiotic resistance genes, stress genes, and virulence genes. Furthermore, two different sets of Single Copy Genes (SCGs) were used to construct the phylogenetic trees. Based on the reconstructed phylogeny, phylogenetic gain of each MAG is calculated to give an account of novelty.
This article presents metagenomic-assembled genomes (MAGs) of prokaryotic organisms originating from chicken caeca. The samples originate from broiler chickens, one group was infected with Newcastle Disease Virus (NDV) and one uninfected... more
This article presents metagenomic-assembled genomes (MAGs) of prokaryotic organisms originating from chicken caeca. The samples originate from broiler chickens, one group was infected with Newcastle Disease Virus (NDV) and one uninfected control group. There were four birds per group. Both groups were raised on commercially available antibiotic free feed under a semi-controlled setup. The binning step of the samples identified 130 MAGs with ≥50 % completion, and ≤10 % contamination. The data presented includes sequences in FASTA format, tables of functional annotation of genes, and data from two different approaches for phylogenetic tree construction using these MAGs. Major geochemical cycles at community level including carbon, sulfur, and nitrogen cycles are also presented.
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia... more
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia pseudomallei, is emerging as a promising novel approach, but our understanding of conditions under which Burkholderia prophages can be induced remains limited. Here, we first demonstrated the isolation of Burkholderia phages from the hemocultures of melioidosis patients. The B.pseudomallei-positive hemoculture bottles were filtered to remove bacteria, and then phages were isolated and purified by spot and double agar overlay plaque assays. Forty blood samples (hemoculture-confirmed melioidosis) were tested, and phages were found in 30% of the samples. Transmission electron microscopy and genome analysis of the isolated phages, vB_HM387 and vB_HM795, showed that both phages are Myoviruses. These two phages were stable at a pH of 5–7 and temperatures of 25–37°C, suggesting their ability to survive in human blood. The genome sizes of vB_HM387 and vB_HM795 are 36.3 and 44.0 kb, respectively. A phylogenetic analysis indicated that vB_HM387 has homologs, but vB_HM795 is a novel Myovirus, suggesting the heterogeneity of Burkholderia phages in melioidosis patients. The key finding that Burkholderia phages could be isolated from the blood of melioidosis patients highlights the potential application of phage-based assays by detecting phages in blood as a pathogen-derived biomarker of infection.
Coccidiosis, caused by Eimeria parasites, poses significant economic and welfare challenges in poultry farming. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and... more
Coccidiosis, caused by Eimeria parasites, poses significant economic and welfare challenges in poultry farming. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and host metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis (MOFA) machine learning model, data on caecal microbiota and host metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.
This article presents metagenomic-assembled genomes (MAGs) of prokaryotic organisms originating from chicken caeca. The samples originate from broiler chickens, one group was infected with Newcastle Disease Virus (NDV) and one uninfected... more
This article presents metagenomic-assembled genomes (MAGs) of prokaryotic organisms originating from chicken caeca. The samples originate from broiler chickens, one group was infected with Newcastle Disease Virus (NDV) and one uninfected control group. There were four birds per group. Both groups were raised on commercially available antibiotic free feed under a semi-controlled setup. The binning step of the samples identified 130 MAGs with ≥ 50% completion, and ≤ 10% contamination. The data presented includes sequences in FASTA format, tables of functional annotation of genes, and data from two different approaches for phylogenetic tree construction using these MAGs. Major geochemical cycles at community level including carbon, sulfur, and nitrogen cycles are also presented.
This article focuses the recovery of prokaryotic organisms including bacteria and archaea from 9 different groups of chicken raised in different farm setups in Pakistan. The groups comprise of three different breeds (Broilers, White... more
This article focuses the recovery of prokaryotic organisms including bacteria and archaea from 9 different groups of chicken raised in different farm setups in Pakistan. The groups comprise of three different breeds (Broilers, White Layers, Black Australorp) of chicken raised in different farming setups that include antibiotic-free control, commercial (open and controlled shed), and backyard farms. We acquired 569 Metagenomics-Assembled Genomes (MAGs) with a completion rate of ≥50% and contamination of ≤10%. For each MAG, we have obtained functional annotations that include KEGG modules, carbohydrate active enzymes (CAZymes), peptidases, geochemical cycles, antibiotic resistance, stress, and virulence genes. Furthermore, we have used Single Copy Genes (SCGs) to construct phylogenetic tree utilizing several approaches, and then give an account of novelty of the MAGs using phylogenetic gain.
There was no effect of removing ZnO from piglet diets on the gut microbiome. These preliminary results suggest that there is no benefit to extended lactation periods on the gut microbiome of weaning piglets and ZnO can indeed be... more
There was no effect of removing ZnO from piglet diets on the gut microbiome. These preliminary results suggest that there is no benefit to extended lactation periods on the gut microbiome of weaning piglets and ZnO can indeed be successfully removed from piglet diets without impacting on the gut microbiome. However, the piglets in the experiments were raised in a challenge-free facility which is not representative of a commercial setting and so there may indeed be a need to find an alternative to ZnO in practice.
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In... more
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some shortchain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Poultry is frequently associated with campylobacteriosis in humans, with Campylobacter jejuni being the most usual Campylobacter associated with disease in humans. Far-reaching research on Campylobacter was undertaken over the past two... more
Poultry is frequently associated with campylobacteriosis in humans, with Campylobacter jejuni being the most usual Campylobacter associated with disease in humans. Far-reaching research on Campylobacter was undertaken over the past two decades. This has resulted in interventions being put in place on farms and in processing plants. Despite these interventions, coupled with increased media coverage to educate the consumer on Campylobacter prevalence and campylobacteriosis, human health incidents are still high. Recent research is now shifting toward further understanding of the microorganisms to challenge interventions in place and to look at further and more relevant interventions for the reduction in human incidents. Farm practices play a key role in the control of colonization within poultry houses and among flocks. Prevalence at the farm level can be up to 100% and time of colonization may vary widely between flocks. Considerable research has been performed to understand how farm management and animal health practices can affect colonization on farms. This review will focus on farm practices to date as a baseline for future interventions as the microorganism becomes better understood. Further research is required to understand the chicken microbiome and factors influencing vertical transmission. The persistence of Campylobacter in animal and environmental reservoirs within and around farms requires further investigation to tailor farm practices toward preventing such reservoirs.
Chickens are a key food source for humans yet their microbiome contains bacteria that can be pathogenic to humans, and indeed potentially to chickens themselves. Campylobacter is present within the chicken gut and is the leading cause of... more
Chickens are a key food source for humans yet their microbiome contains bacteria that can be pathogenic to humans, and indeed potentially to chickens themselves. Campylobacter is present within the chicken gut and is the leading cause of bacterial foodborne gastroenteritis within humans worldwide. Infection can lead to secondary sequelae such as Guillain-Barré syndrome and stunted growth in children from low-resource areas. Despite the global health impact and economic burden of Campylobacter, how and when Campylobacter appears within chickens remains unclear. As such, there has been a motivation to decrease the number of Campylobacter within chickens and thus reduce the risk of infection to humans. The lack of day-to-day microbiome data with replicates, relevant metadata, and a lack of natural infection studies have delayed our understanding of the chicken gut microbiome and Campylobacter. Here, we performed a comprehensive day-to-day microbiome analysis of the chicken cecum from day 3 to 35 (12 replicates each day; n=396) combining metadata such as chicken weight and feed conversion rates to investigate what the driving forces are for the microbial changes within the chicken gut over time, and how this relates to Campylobacter appearance within a natural habitat setting. We found a rapidly increasing microbial diversity up to day 12 with variation observed both in terms of genera and abundance, before a stabilisation of the microbial diversity after day 20. In particular, we identified a shift from competitive to environmental drivers of microbial community from days 12 to 20 creating a window of opportunity whereby Campylobacter appears. Campylobacter was identified at day 16 which was one day after the most substantial changes in metabolic profiles observed. In addition, microbial variation over time is most likely influenced by the diet of the chickens whereby significant shifts in OTU abundances and beta dispersion of samples often corresponded with changes in feed. This study is unique in comparison to the most recent studies as neither sampling was sporadic nor Campylobacter was artificially introduced, thus the experiments were performed in a natural setting. We believe that our findings can be useful for future intervention strategies and can help elucidate the mechanism through which Campylobacter within chickens can be reduced.
Campylobacter jejuni is the leading cause of food-borne bacterial enteritis in humans, with contaminated poultry products considered the main source of infection. To survive the food chain, C. jejuni utilizes multiple defense mechanisms... more
Campylobacter jejuni is the leading cause of food-borne bacterial enteritis in humans, with contaminated poultry products considered the main source of infection. To survive the food chain, C. jejuni utilizes multiple defense mechanisms that counter oxidative and aerobic stresses. In this study, we phenotypically characterised 63 C. jejuni strains with oxidative stress survival and antimicrobial susceptibility testing to investigate correlations between these two phenotypes against the source of the strains and the presence of the MarR regulators RrpA and RrpB which have a role in regulating the response to oxidative and aerobic stress. C. jejuni strains isolated from meat and neck skin displayed the highest resistance to oxidative stress. In addition, C. jejuni strains that have an rrpA+rrpB− profile exhibit increased resistance to oxidative stress and to antimicrobials. Here we establish a preliminary link between the distribution of RrpA and RrpB and the increased resistance to antimicrobials. This study provides insight into how the genotypic make up of C. jejuni can influence the ability of the bacterium to survive within areas of high oxygen stress, such as the food chain, and subsequently can have a potential negative impact on human health.
Listeriosis is a foodborne disease, with a high mortality rate, that predominantly affects the elderly. Under European Union legislation, EC 2073/2005, food business operators are encouraged to undertake sampling to ensure that the food... more
Listeriosis is a foodborne disease, with a high mortality rate, that predominantly affects the elderly. Under European Union legislation, EC 2073/2005, food business operators are encouraged to undertake sampling to ensure that the food processing environment, and required to ensure that food products, are free of Listeria monocytogenes. To determine the prevalence of L. monocytogenes in smaller food processing facilities in Northern Ireland, 24 companies submitted six processing environment swabs and two food samples every two months for eighteen months (July 2015 to November 2016) for L. monocytogenes examination. The prevalence of L. monocytogenes was 4.6% in food samples, and 6.3% in processing environment swabs. Over the duration of the study, 96 isolates of L. monocytogenes were obtained, one from each positive sample, except for two meat samples that had >100 cfu/g, where two isolates were obtained from each sample. No seasonality in occurrence of L. monocytogenes was seen for food isolates but significantly higher numbers of positive processing environment swabs were found in the warmer months of May, July and September (p = .007). Pulsed Field Gel Electrophoresis (PFGE) analysis revealed the presence of 27 pulsotypes; 9 pulsotypes were shared between different facilities and 9 were persistent. Based on a Combase predictive growth model, 77.5% (n = 130) of the foods tested were predicted to support the growth of L. monocytogenes. All of the isolates carried the pathogenicity genes inlA and actA and 71.4% carried qacH, which confers resistance to quaternary ammonium compounds which are frequently used in sanitizers. Whole genome sequencing of the isolates allowed multi-locus sequence typing to be undertaken. The data indicated that the sequence types identified included those with disease-causing ability, highlighting the disease-causing potential of the isolates.
Research Interests:
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence‐associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511,... more
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence‐associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E‐cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence‐associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST‐OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST‐OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs‐associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs‐induced cleavage of E‐cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence‐associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Research Interests:
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of... more
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.
Research Interests:
Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we... more
Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H.
Research Interests:
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that... more
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB − strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB − strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB − strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB − and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.
Research Interests:
Improving the rate and extent of faecal decomposition in basic forms of sanitation such as pit latrines would benefit around 1.7 billion users worldwide, but to do so requires a major advance in our understanding of the biology of these... more
Improving the rate and extent of faecal decomposition in basic forms of sanitation such as pit latrines would benefit around 1.7 billion users worldwide, but to do so requires a major advance in our understanding of the biology of these systems. As a critical first step, bacterial diversity and composition was studied in 30 latrines in Tanzania and Vietnam using pyrosequencing of 16S rRNA genes, and correlated with a number of intrinsic environmental factors such as pH, temperature, organic matter content/composition and geographical factors. Clear differences were observed at the operational taxonomic unit, family and phylum level in terms of richness and community composition between latrines in Tanzania and Vietnam. The results also clearly show that environmental variables, particularly substrate type and availability, can exert a strong structuring influence on bacterial communities in latrines from both countries. The origins and significance of these environmental differences are discussed. This work describes the bacterial ecology of pit latrines in combination with inherent latrine characteristics at an unprecedented level of detail. As such, it provides useful baseline information for future studies that aim to understand the factors that affect decomposition rates in pit latrines
Research Interests:
BACKGROUND: Recently the Type VI secretion system (T6SS), which can play a significant role in bacterial survival and pathogenesis, was reported in Campylobacter spp., having the hcp gene as a key component. METHODS: Campylobacteriosis is... more
BACKGROUND:
Recently the Type VI secretion system (T6SS), which can play a significant role in bacterial survival and pathogenesis, was reported in Campylobacter spp., having the hcp gene as a key component.
METHODS:
Campylobacteriosis is associated with the consumption of infected chicken meat. Our study aimed to explore the presence of T6SS in C. jejuni (n = 59) and C. coli (n = 57) isolates, from retail raw chicken and to investigate their pathogenic potential. The hcp gene was used as an indicator for the T6SS presence.
RESULTS:
Using multiplex PCR we have identified a significantly higher prevalence of hcp in C. coli isolates (56.1%) than in C. jejuni (28.8%) and AFLP analysis of the isolates showed a high degree of genetic similarity between the isolates carrying the hcp gene. Genome sequencing data showed that 84.3% of the C. coli and 93.7% of the C. jejuni isolates had all 13 T6SS open reading frames. Moreover, the virulence characteristics of hcp + isolates, including motility and the ability to invade human intestinal epithelial cells in vitro, were significantly greater than in the control strain C. jejuni 12502; a human isolate which is hcp positive.
CONCLUSION:
Overall, it was discovered that hcp (+) C. coli and C. jejuni isolated from retail chicken isolates posses genetic and phenotypic properties associated with enhanced virulence. However, since human infections with C. coli are significantly less frequent than those of C. jejuni, the relationship between virulence factors and pathogenesis requires further study.
Research Interests:
Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are... more
Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pre-treatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pre-treated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time- and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells
Research Interests:
The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome... more
The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment
Research Interests:
Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a... more
Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains
Research Interests:
BACKGROUND: In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to... more
BACKGROUND:
In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to access animal-based foods. However, some practices associated with intensification may contribute to zoonotic disease emergence and spread: for example, the sustained use of antibiotics, concentration of animals in confined units, and long distances and frequent movement of livestock.
OBJECTIVES:
Here we present the diverse range of ecological, biological, and socioeconomic factors likely to enhance or reduce zoonotic risk, and identify ways in which a comprehensive risk analysis may be conducted by using an interdisciplinary approach. We also offer a conceptual framework to guide systematic research on this problem.
DISCUSSION:
We recommend that interdisciplinary work on zoonotic risk should take into account the complexity of risk environments, rather than limiting studies to simple linear causal relations between risk drivers and disease emergence and/or spread. In addition, interdisciplinary integration is needed at different levels of analysis, from the study of risk environments to the identification of policy options for risk management.
CONCLUSION:
Given rapid changes in livestock production systems and their potential health implications at the local and global level, the problem we analyze here is of great importance for environmental health and development. Although we offer a systematic interdisciplinary approach to understand and address these implications, we recognize that further research is needed to clarify methodological and practical questions arising from the integration of the natural and social sciences.
Research Interests:
Campylobacter jejuni is a leading cause of acute gastroenteritis. C. jejuni lipooligosaccharide (LOS) is a potent activator of Toll-like receptor (TLR) 4-mediated innate immunity. Structural variations of the LOS have been previously... more
Campylobacter jejuni is a leading cause of acute gastroenteritis. C. jejuni lipooligosaccharide (LOS) is a potent activator of Toll-like receptor (TLR) 4-mediated innate immunity. Structural variations of the LOS have been previously reported in the oligosaccharide (OS) moiety, the disaccharide lipid A (LA) backbone, and the phosphorylation of the LA. Here, we studied LOS structural variation between C. jejuni strains associated with different ecological sources and analyzed their ability to activate TLR4 function. MALDI-TOF MS was performed to characterize structural variation in both the OS and LA among 15 different C. jejuni isolates. Cytokine induction in THP-1 cells and primary monocytes was correlated with LOS structural variation in each strain. Additionally, structural variation was correlated with the source of each strain. OS sialylation, increasing abundance of LA d-glucosamine versus 2,3-diamino-2,3-dideoxy-d-glucose, and phosphorylation status all correlated with TLR4 activation as measured in THP-1 cells and monocytes. Importantly, LOS-induced inflammatory responses were similar to those elicited by live bacteria, highlighting the prominent contribution of the LOS component in driving host immunity. OS sialylation status but not LA structure showed significant association with strains clustering with livestock sources. Our study highlights how variations in three structural components of C. jejuni LOS alter TLR4 activation and consequent monocyte activation.
Research Interests:
Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating bacterial disruption and invasion of the intestinal epithelium. While C. jejuni infection can be reproduced in vitro using intestinal epithelial... more
Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating bacterial disruption and invasion of the intestinal epithelium. While C. jejuni infection can be reproduced in vitro using intestinal epithelial cell (IEC) lines, low numbers of bacteria invading IECs do not reflect these clinical symptoms. Performing in vitro assays under atmospheric oxygen conditions neither is optimal for microaerophilic C. jejuni nor reflects the low-oxygen environment of the intestinal lumen. A vertical diffusion chamber (VDC) model system creates microaerobic conditions at the apical surface and aerobic conditions at the basolateral surface of cultured IECs, producing an in vitro system that closely mimics in vivo conditions in the human intestine. Ninefold increases in interacting and 80-fold increases in intracellular C. jejuni 11168H wild-type strain bacteria were observed after 24-h coculture with Caco-2 IECs in VDCs under microaerobic conditions at the apical surface, compared to results under aerobic conditions. Increased bacterial interaction was matched by an enhanced and directional host innate immune response, particularly an increased basolateral secretion of the proinflammatory chemokine interleukin-8 (IL-8). Analysis of the invasive ability of a nonmotile C. jejuni 11168H rpoN mutant in the VDC model system indicates that motility is an important factor in the early stages of bacterial invasion. The first report of the use of a VDC model system for studying the interactions of an invasive bacterial pathogen with IECs demonstrates the importance of performing such experiments under conditions that represent the in vivo situation and will allow novel insights into C. jejuni pathogenic mechanisms.
Research Interests:
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide. Despite stringent microaerobic growth requirements, C. jejuni is ubiquitous in the aerobic environment and so must possess regulatory systems to sense... more
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide. Despite stringent microaerobic growth requirements, C. jejuni is ubiquitous in the aerobic environment and so must possess regulatory systems to sense and adapt to external stimuli, such as oxidative and aerobic (O(2)) stress. Reannotation of the C. jejuni NCTC11168 genome sequence identified Cj1556 (originally annotated as a hypothetical protein) as a MarR family transcriptional regulator, and further analysis indicated a potential role in regulating the oxidative stress response. A C. jejuni 11168H Cj1556 mutant exhibited increased sensitivity to oxidative and aerobic stress, decreased ability for intracellular survival in Caco-2 human intestinal epithelial cells and J774A.1 mouse macrophages, and a reduction in virulence in the Galleria mellonella infection model. Microarray analysis of gene expression changes in the Cj1556 mutant indicated negative autoregulation of Cj1556 expression and downregulation of genes associated with oxidative and aerobic stress responses, such as katA, perR, and hspR. Electrophoretic mobility shift assays confirmed the binding of recombinant Cj1556 to the promoter region upstream of the Cj1556 gene. cprS, which encodes a sensor kinase involved in regulation of biofilm formation, was also upregulated in the Cj1556 mutant, and subsequent studies showed that the mutant had a reduced ability to form biofilms. This study identified a novel C. jejuni transcriptional regulator, Cj1556, that is involved in oxidative and aerobic stress responses and is important for the survival of C. jejuni in the natural environment and in vivo.
Research Interests:
Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule... more
Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzyme interrupts the transit of E. coli K1 from gut to brain via the blood circulation and prevents death from systemic infection. We now show that experimental E. coli K1 infection is accompanied by extensive modulation of host gene expression in the liver, spleen and brain tissues of neonatal rats. Bacterial invasion of the brain resulted in a threefold or greater upregulation of approximately 400 genes, a large number of which were associated with the induction of inflammation and the immune and stress responses: these included genes encoding C-X-C and C-C chemokines, lipocalins, cytokines, apolipoproteins and enzymes involved in the synthesis of low-molecular-mass inflammatory mediators. Administration of a single dose of endoE, 24 h after initiation of systemic infection, markedly reduced, but did not completely abrogate, these changes in gene expression, suggesting that attenuation of E. coli K1 virulence by removal of the polySia capsule may minimize the attendant inflammatory processes that contribute to poor outcome in these severe systemic infections.
Research Interests:
The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two... more
The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and
molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8
epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was
considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide
(CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the
bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed
to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other
bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated
the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol
treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and
quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum
sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting
the existence of a cross talk mechanism that modulates CPS expression during infection.
Research Interests:
BACKGROUND: Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in... more
BACKGROUND:
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation.
RESULTS:
Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised.
CONCLUSIONS:
Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.
Research Interests:
Melanoma is among the few cancers with rising incidence. Currently there is no effective treatment for metastatic disease, but improved detection of melanoma has the potential to benefit the management of patients with early disease.... more
Melanoma is among the few cancers with rising incidence. Currently there is no effective treatment for metastatic disease, but improved detection of melanoma has the potential to benefit the management of patients with early disease. Radioimmunodection by imaging with single-chain Fv (scFv) antibody fragments is one such emerging diagnostic method. However, the amount of scFv that can be produced at a scale suitable for use in patients is limiting. We have previously shown that the bacterial expression of a scFv derived from a monoclonal antibody (MAb) specific for melanoma-associated proteoglycan can be increased by light chain shuffling. In this report we show that a further increase in expression yield can be obtained by reversing the usual VH-VL orientation of scFvs to VL-VH. Such seemingly minor changes have previously been reported to have unexpected effects on the in vitro and in vivo binding properties of recombinant antibodies. Our results show that reversal of the V domain orientation of the scFv improves expression by 150% without an adverse effect on melanoma binding in vitro and tumor targeting in vivo. Therefore, our results show that alteration of V domain orientation can improve the production yield of clinically useful antibody fragments. When used in combination with other antibody engineering approaches for increased antibody production changing the domain orientation is a simple strategy to achieve significant improvements in the production of scFvs for tumor radioimmunodetection for patient studies.
Research Interests:
Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping... more
Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping (whole-genome comparisons of microbes using DNA microarrays) combined with Bayesian-based algorithms to model the phylogeny of this major food-borne pathogen. In this study 111 C. jejuni strains were examined by genomotyping isolates from humans with a spectrum of C. jejuni-associated disease (70 strains), chickens (17 strains), bovines (13 strains), ovines (5 strains), and the environment (6 strains). From these data, the Bayesian phylogeny of the isolates revealed two distinct clades unequivocally supported by Bayesian probabilities (P  1); a livestock clade comprising 3135 (88.6%) of
the livestock isolates and a ‘‘nonlivestock’’ clade comprising further clades of environmental isolates. Several genes were identified as characteristic of strains in the livestock clade. The most prominent was a cluster of six genes (cj1321 to cj1326) within the flagellin glycosylation locus, which were confirmed by PCR analysis as genetic markers in six additional chicken-associated strains. Surprisingly these studies show that the majority (3970, 55.7%) of C. jejuni human isolates were found in the nonlivestock clade, suggesting that most C. jejuni infections may be from nonlivestock (and possibly nonagricultural) sources. This study has provided insight into a previously unidentified reservoir of C. jejuni infection that may have implications in disease-control strategies. The comparative phylogenomics approach described provides a robust methodological prototype that should be applicable to other microbes.
Research Interests:
Stunted growth is an emerging global challenge affecting children under the age of 5 years in lowand middle-income countries. Despite such a high global prevalence of stunting, the mechanism of pathogenesis and the role of associated gut... more
Stunted growth is an emerging global challenge affecting children under the age of 5 years in lowand middle-income countries. Despite such a high global prevalence of stunting, the mechanism of pathogenesis and the role of associated gut microbiota is poorly understood. The present study was designed to investigate the association of pathogenic strains of E. coli with the residential gut microbiota of stunted growth children. A total of 64 stool sample were collected from children aged ≤ 5 years, and were processed for isolation and molecular characterization of diarrheagenic E. coli. Selected stool samples (n = 39 including three normal controls) were then analysed for microbial community profiling using 16S ribosomal RNA (rRNA) gene sequencing. Furthermore, associations between changes in the microbiota in the presence of different E. coli strains was explored. Pathotyping of the isolated E. coli (n = 64) has shown that 39.68% belonged to one of the five pathotypes of E. coli whilst the remaining ones were non-typeable. Amongst the different pathotypes, EPEC was found to be the most prevalent (52%; n = 13), followed by EAEC (20%; n = 5), EIEC (12%; n = 3), EHEC (8%; n = 2) and ETEC 2 (8%; n = 2). Phylogrouping analysis has shown that majority of the strains belonged to B2 (28.12%). Microbial diversity is shown to be significant and varied when the samples are organized under the recovered phylogroups. Moreover, based on predictive metabolism, the colonization of these strains were found to be significantly associated with energy utilization pathways such as Denovoprine-2 and glyoxylate-by. Differential analysis has shown that Escherichia-Shigella and Enterococcus were altered for the children with stunted growth.
Campylobacter jejuni is the major bacterial cause of foodborne gastroenteritis worldwide. Mechanistically, how this pathogen interacts with intrinsic defence machinery of human intestinal epithelial cells (IECs) remains elusive. To... more
Campylobacter jejuni is the major bacterial cause of foodborne gastroenteritis worldwide. Mechanistically, how this pathogen interacts with intrinsic defence machinery of human intestinal epithelial cells (IECs) remains elusive. To address this, we investigated how C. jejuni counteracts the intracellular and extracellular reactive oxygen species (ROS) in IECs. Our work shows that C. jejuni differentially regulates intracellular and extracellular ROS production in human T84 and Caco-2 cells. C. jejuni downregulates the transcription and translation of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX1), a key ROS-generating enzyme in IECs and antioxidant defence genes CAT and SOD1. Furthermore, inhibition of NOX1 by diphenylene iodonium (DPI) and siRNA reduced C. jejuni ability to interact, invade, and intracellularly survive within T84 and Caco-2 cells. Collectively, these findings provide mechanistic insight into how C. jejuni modulates the IEC defence machinery.
Campylobacter jejuni infection poses a serious global threat to public health. The increasing incidence and antibiotic resistance of this bacterial infection have necessitated the adoption of various strategies to curb this trend,... more
Campylobacter jejuni infection poses a serious global threat to public health. The increasing incidence and antibiotic resistance of this bacterial infection have necessitated the adoption of various strategies to curb this trend, primarily through developing new drugs with new mechanisms of action. The enzyme malate:quinone oxidoreductase (MQO) has been shown to be essential for the survival of several bacteria and parasites. MQO is a peripheral membrane protein that catalyses the oxidation of malate to oxaloacetate, a crucial step in the tricarboxylic acid cycle. In addition, MQO is involved in the reduction of the quinone pool in the electron transport chain and thus contributes to cellular bioenergetics. The enzyme is an attractive drug target as it is not conserved in mammals. As a preliminary step in assessing the potential application of MQO from C. jejuni (CjMQO) as a new drug target, we purified active recombinant CjMQO and conducted, for the first time, biochemical analyses of MQO from a pathogenic bacterium. Our study showed that ferulenol, a submicromolar mitochondrial MQO inhibitor, and embelin are nanomolar inhibitors of CjMQO. We showed that both inhibitors are mixed-type inhibitors versus malate and noncompetitive versus quinone, suggesting the existence of a third binding site to accommodate these inhibitors; indeed, such a trait appears to be conserved between mitochondrial and bacterial MQOs. Interestingly, ferulenol and embelin also inhibit the in vitro growth of C. jejuni, supporting the hypothesis that MQO is essential for C. jejuni survival and is therefore an important drug target.
Cytolethal distending toxin (CDT) is produced by a range of Gram-negative pathogenic bac- teria such as Campylobacter jejuni. CDT represents an important virulence factor that is a heterotrimeric complex composed of CdtA, CdtB, and CdtC.... more
Cytolethal distending toxin (CDT) is produced by a range of Gram-negative pathogenic bac- teria such as Campylobacter jejuni. CDT represents an important virulence factor that is a heterotrimeric complex composed of CdtA, CdtB, and CdtC. CdtA and CdtC constitute regulatory subunits whilst CdtB acts as the catalytic subunit exhibiting phosphatase and DNase activities, resulting in cell cycle arrest and cell death. Extracellular vesicle (EV) secretion is an evolutionarily conserved process that is present throughout all kingdoms. Mammalian EVs play important roles in regular cell-to-cell communications but can also spread pathogen- and host-derived molecules during infections to alter immune responses. Here, we demonstrate that CDT targets the endo-lysosomal compartment, partially evading lysosomal degradation and exploiting unconventional secretion (EV release), which is largely involved in bacterial infections. CDT-like effects are transferred by Caco-2 cells to uninfected heterologous U937 and homologous Caco-2 cells. The journey of EVs derived from CDT-treated Caco-2 cells is associated with both intestinal and myeloid tumour cells. EV release represents the primary route of CDT dissemination, revealing an active toxin as part of the cargo. We demonstrated that bacterial toxins could represent suitable tools in cancer therapy, highlighting both the benefits and limitations. The global cell response involves a moderate induction of apoptosis and autophagic features may play a protective role against toxin-induced cell death. EVs from CDT-treated Caco-2 cells represent reliable CDT carriers, potentially suitable in colorectal cancer treatments. Our data present a potential bacterial-related biotherapeutic supporting a multidrug anticancer protocol.
Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species... more
Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species and 13 subspecies, with many belonging to a group known as ‘emerging Campylobacter pathogens’. Within Campylobacter, seven species have been identified to harbour a complete T6SS cluster but have yet to be comparatively assessed. In this study, using systematic bioinformatics approaches and the T6SS-positive Campylobacter jejuni 488 strain as a reference, we explored the genus-wide prevalence, similarity and make-up of the T6SS amongst 372 publicly available ‘complete’ Campylobacter genomes. Our analyses predict that approximately one-third of Campylobacter species possess a T6SS. We also putatively report the first identification of a T6SS in four species: Campylobacter cuniculorum, Campylobacter helveticus, Campylobacter armoricus and Campylobacter ornithocola. The Campylobacter T6SSs cluster into three distinct organizations (I–III), of which two break down into further variants. Thirty T6SS-containing genomes were found to harbour more than one vgrG gene, with Campylobacter lari strain NCTC 11845 possessing five. Analysis of the C. jejuni Pathogenicity Island-1 confirmed its conservation amongst T6SS-positive C. jejuni strains, as well as highlighting its diverse genetic composition, including additional putative effector–immunity pairs (e.g. PoNe and DUF1911 domains). Effector–immunity pairs were also observed neighbouring vgrGs in several other Campylobacter species, in addition to putative genes encoding nucleases, lysozymes, ATPases and a ferric ATP-binding cassette uptake system. These observations highlight the diverse genetic make-up of the T6SS within Campylobacter and provide further evidence of its role in pathogenesis.
Pit latrines are used by billions of people globally, often in developing countries where they provide a low-tech and low-cost sanitation method. However, health and social problems can arise from a lack of emptying or maintenance of... more
Pit latrines are used by billions of people globally, often in developing countries where they provide a low-tech and low-cost sanitation method. However, health and social problems can arise from a lack of emptying or maintenance of these facilities. A better understanding of the biological and environmental parameters within pit latrines could inform attempts to enhance material decomposition rates, and therefore slow fill-up rate. In this study, we have performed a spatial analysis of 35 Tanzanian pit latrines to identify bacteria and environmental factors that are associated with faster or slower pit latrine fill- up rates. Using ordination of microbial community data, we observed a linear gradient in terms of beta diversity with increasing pit latrine sample depth, corresponding to a shift in microbial community structure from gut-associated families in the top layer to environmental- and wastewater-associated taxa at greater depths. We also investigated the bacteria and environmental parameters associated with fill-up rates, and identified pH, volatile solids, and volatile fatty acids as features strongly positively correlated with pit latrine fill-up rates, whereas phosphate was strongly negatively correlated with fill-up rate. A number of pit latrine microbiota taxa were also correlated with fill-up rates. Using a multivariate regression, we identified the Lactobacillaceae and Incertae_Sedis_XIII taxa as particularly strongly positively and negatively correlated with fill-up rate, respectively. This study therefore increases knowledge of the microbiota within pit latrines, and identifies potentially important bacteria and environmental variables associated with fill- up rates. These new insights may be useful for future studies investigating the decomposition process within pit latrines.
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and... more
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Abstract: Nematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of... more
Abstract: Nematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp’s intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.
Campylobacter jejuni is the major bacterial cause of foodborne gastroenteritis worldwide. Mechanistically, how this pathogen interacts with intrinsic defence machinery of human intestinal epithelial cells (IECs) remains elusive. To... more
Campylobacter jejuni is the major bacterial cause of foodborne gastroenteritis worldwide. Mechanistically, how this pathogen interacts with intrinsic defence machinery of human intestinal epithelial cells (IECs) remains elusive. To address this, we investigated how C. jejuni counteracts the intracellular and extracellular reactive oxygen species (ROS) in IECs. Our work shows that C. jejuni differentially regulates intracellular and extracellular ROS production in human T84 and Caco-2 cells. C. jejuni downregulates the transcription and translation of Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (Nox1), a key ROS-generating enzyme in IECs and antioxidant defence genes cat and sod1. Furthermore, inhibition of Nox1 by diphenylene iodonium (DPI) and siRNA reduced C. jejuni ability to interact, invade and intracellularly survive within T84 and Caco-2 cells. Collectively, these findings provide mechanistic insight into how C. jejuni modulates the IEC defence machinery.
FlhF protein is critical for intact flagellar assembly in Campylobacter jejuni. It is a putative GTPase with B-, N-and G-domains. However, the role of the Band N-domains in flagella biosynthesis remains unclear in C. jejuni. This study... more
FlhF protein is critical for intact flagellar assembly in Campylobacter jejuni. It is a putative GTPase with B-, N-and G-domains. However, the role of the Band N-domains in flagella biosynthesis remains unclear in C. jejuni. This study demonstrated that both the Band N-domains are essential for flagellar synthesis, with the absence of Band/or N-domains showing truncated variants of FlhF by TEM. Point mutations in the Band N-domains (T13A, K159A, G231A) also induced flagella abnormalities. Furthermore, significant defects in GTPase activity and polar targeting of FlhF were triggered by point mutations of Band N-domains. Flagella gene expression and transcription were also significantly disrupted in flhF(T13A), flhF(K159A) and flhF(G231A) strains. This study initially explored the effects of Band N-domains on flagella synthesis. We speculated that Band N-domains may directly or indirectly cause flagella abnormalities by affecting flagellar gene expression or GTPase activity, which helps us better understand the function of FlhF in flagella synthesis.
The paralogues RrpA and RrpB which are members of MarR family of DNA binding proteins are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive... more
The paralogues RrpA and RrpB which are members of MarR family of DNA binding proteins are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive regulator of mdaB, encoding a flavin-dependent quinone reductase that contributes to the protection from redox stress mediated by structurally diverse quinones, whilst RrpB negatively regulates the expression of cj1555c (renamed nfrA for NADPH-flavin reductase A), encoding a flavin reductase. NfrA reduces riboflavin at a greater rate than its derivatives, suggesting exogenous free flavins are the natural substrate. MdaB and NfrA both prefer NADPH as an electron donor. Cysteine substitution and post-translational modification analyses indicated that RrpA and RrpB employ a cysteine-based redox switch. Complete genome sequence analyses revealed mdaB is frequently found in Campylobacter and related Helicobacter spp., whilst nfrA is predominant in C. jejuni strains. Quinones and flavins are redox cycling agents secreted by a wide range of cell-types that can form damaging superoxide by one-electron reactions. We propose a model for stress adaptation where MdaB and NfrA facilitate a two-electron reduction mechanism to the less toxic hydroquinones, thus aiding survival and persistence of this major pathogen.
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating... more
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anticoccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events. Antimicrobial LC 50 (mg/ml) E. tenella E. bovis Maltodextrin 0.25 ± 0.04 0.29 ± 0.26 Sodium chloride 0.05 ± 0.19 0.07 ± 0.07 Citric acid 2.06 ± 0.15 2.21 ± 0.24 Sodium citrate 0.92 ± 2.32 0.96 ± 0.32 Silica 0.55 ± 0.04 0.64 ± 0.11 Malic acid 0.66 ± 0.16 0.61 ± 0.16 Citrus extract 0.45 ± 0.01 0.53 ± 0.22 Olive extract 0.13 ± 0.31 0.17 ± 0.18
The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and... more
The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the “T6SS-containing CJIE3” as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.
Campylobacter is the most common bacterial cause of human gastroenteritis in the world, with the species Campylobacter jejuni being responsible for over 80% of Campylobacter infections [1]. C. jejuni is abundant within the avian gut and... more
Campylobacter is the most common bacterial cause of human gastroenteritis in the world, with the species Campylobacter jejuni being responsible for over 80% of Campylobacter infections [1]. C. jejuni is abundant within the avian gut and the consumption and handling of poultry is the main route of transmission to humans [2,3]. In humans, C. jejuni infection ranges from asymptomatic carriage to bloody diarrhoea, fever and abdominal pains as well as serious post-infectious sequelae such as the neuromuscular paralysis of Guillain–Barré syndrome [4]. In low-resource areas, Campylobacter infections are common in young children (causing watery diarrhoea rather than the bloody diarrhoea that occurs in high-resource countries) and are associated with many deaths, as well as stunted growth and life-long physical and cognitive deficiencies [5]. In addition, as highlighted by the WHO, C. jejuni is a multi-antibiotic-resistant pathogen and new therapeutics are urgently required [6].
Historically, the lack of a convenient animal model, coupled with genetic diversity and difficulties in culturing C. jejuni, has hampered pathogenesis research [7]. For this reason, it is important that the Campylobacter research community continues to investigate this important human pathogen. This Special Issue was produced with the aim of promoting the latest research on Campylobacter pathogenicity focusing on a range of topics from virulence determinants such as lipooligosaccharide (LOS) to functional characterisation of specific genes of interest. The Special Issue aims to look at novel infection models, immunological responses of Campylobacter infection and epidemiological studies with the overarching aim of intervention and control strategies. Survival themes such as biofilms, antimicrobial resistance and omics-based topics such as the microbiome also form a key part of the Special Issue. Overall, this Microorganisms Special Issue highlights some of the most up-to-date research relating to Campylobacter pathogenicity.
Background: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying... more
Background: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC ® 13124 invasion of Madin-Darby Canine Kidney cells (MDCK). Results: Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1β, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H 2 O 2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). Conclusion: The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate).
Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in... more
Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in immune system development and regulation of metabolism, there is no surprise that the gut microbiota is a possible culprit behind T1DM pathogenesis. Additionally, microbiota manipulation by probiotics, prebiotics, dietary factors and microbiota transplantation can all modulate early host–microbiota interactions by enabling beneficial microbes with protective potential for individuals with T1DM or at high risk of developing T1DM. In this review, we discuss the challenges and perspectives of translating microbiome data into clinical practice. Nevertheless, this progress will only be possible if we focus our interest on developing numerous longitudinal, multicenter, interventional and double-blind randomized clinical trials to confirm their efficacy and safety of these therapeutic approaches.
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based... more
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni-mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.
Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a... more
Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a mixture of natural antimicrobials (A3001) to reduce the adherence of the T6SS+/- C. coli isolates (NC1hcp-, NC2 hcp- and NC3 hcp+) to chicken neck skin and whole carcasses. Overall, the antimicrobial mixture induced a significant reduction in the capability of our C. coli isolates to colonize the chicken skin (p<0.05) and carcasses (p<0.0001) but with a greater effect (≈3 log reduction) on the NC3 isolate. Using the HCT-8 in vitro infection model we also show that at a concentration of 0.5% A3001, the impact on the NC3 isolate is accompanied by the downregulation of the hcp gene (p=0.0001), and indicator of the T6SS presence. The results described herein also indicated that these isolates are highly resistant to H2O2, up to 20mM, suggesting a high resilience to environmental stresses. In summary our study shows that natural antimicrobials can reduce the ability of T6SS positive chicken C. coli isolates to adhere to chicken skin or to the whole carcass and to infect epithelial cells in vitro and could be considered a potential intervention at processor level.

And 20 more

Campylobacter jejuni is the major cause of human bacterial gastroenteritis. As a microaerophilic bacterium, C. jejuni will be exposed to reactive oxygen species (ROS) during the course of normal bacterial metabolism as well as during... more
Campylobacter jejuni is the major cause of human bacterial gastroenteritis. As a microaerophilic bacterium, C. jejuni will be exposed to reactive oxygen species (ROS) during the course of normal bacterial metabolism as well as during colonisation or infection, from the host immune system. C. jejuni contains a number of different mechanisms for countering the effects of oxidative stress and the control of the C. jejuni oxidative stress response is complex involving multiple inter-linked levels of regulation, with two new regulators of the oxidative stress response recently identified. In this chapter, we cover both the mechanisms of C. jejuni oxidative stress defence and the current understanding of the increasingly complex regulation of this oxidative stress response.
The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter... more
The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).
Cryptosporidium is an enteric protozoan parasite that causes gastrointestinal disorders in humans and in a wide range of animals, mainly in calves. As there is no available efficient treatment for cryptosporidiosis, in this study we... more
Cryptosporidium is an enteric protozoan parasite that causes gastrointestinal disorders in humans and in a wide range of animals, mainly in calves. As there is no available efficient treatment for cryptosporidiosis, in this study we evaluated the effect of Auranta 3001, a natural feed additive on animal growth, number of days with liquid diarrhoea and oocyst excretion, mean oocysts/gram faeces and on biochemical and physical parameters. The study showed that calves fed with Auranta 3001 as a feed additive administered prior to infection with C. parvum, significantly reduced (P < 0.05) the number of days with liquid diarrhoea, the number of days with oocyst excretion, the number of days of antibiotic administration and mean oocysts/gram faeces. Moreover, the prophylactic administration of Auranta 3001, significantly (P < 0.05) reduced the percentage of calves with fever and increased the body weight at day 56. However, significant differences were not seen between IgG, total protein intake and haematocrit percentage. This study showed the efficacy of Auranta 3001 in reducing cryptosporidiosis manifestations in calves.
Antimicrobial agents have been in use for therapeutic purposes for over a century, with most of the development occurring in the latter half of the twentieth century. Penicillin was the first of the naturally occurring antimicrobials to... more
Antimicrobial agents have been in use for therapeutic purposes for over a century, with most of the development occurring in the latter half of the twentieth century. Penicillin was the first of the naturally occurring antimicrobials to be used in medicine and its structure includes a beta-lactam ring. Further compounds, such as the cephalosporins, were discovered and these also included beta-lactam structures. Subsequently bacteria which were resistant to these compounds were found, and their resistance was due to their production of enzymes, beta-lactamases, which hydrolysed the beta-lactam ring. Synthetic derivatives of the beta-lactam antimicrobials were developed to render them recalcitrant to beta-lactamases but enzymes with a broader substrate range evolved, and were categorised as extended substrate beta-lactamases (ESBL). Since the antimicrobials had a significant role to play in human medicine the emergence of ESBL caused significant concerns. Further, similar antimicrobials were used by veterinarians, raising the prospect that bacteria in the commensal flora of livestock could acquire ESBL resistance properties and exchange them via genetic exchange. Thus, pathogenic bacteria present in livestock could become resistant to antimicrobials with adverse consequences should zoonotic infections occur. In this review we consider the emergence of ESBL, the problems involved in detecting and reporting such properties, and consider the consequences for consumers of potentially contaminated food products.