Abstract
The aim of this study is to appraise raffia palm trunk (RPT) biochar prepared with different temperatures on sorption of urban leachate. Biochar used in this study was produced from RPT at three different temperatures (350 °C, 550 °C and 750 °C) while leachate used in this study was collected from two urban wastes dump locations in Warri, Delta State, Nigeria using standard procedure. The pH level of leachate before treatment was found to be acidic while the dissolve oxygen (DO) of leachate was found to be very low. Leachate treatment with RPT-derived elevated the level of pH from acidic region to alkaline region while the dissolve oxygen (DO) received a decrease. Total dissolve solid (TDS) increase after leachate treatment. Interactions of biochar with leachate also decline the concentration of nitrate and phosphate. The COD (chemical oxygen demand) and BOD (biochemical oxygen demand) of leachate before remediation were found to be above the recommended range set by EPA. The level of COD and BOD after treatment was found to decrease as the pyrolysis of RPT biochar increases. Biochar contact with leachate also revealed a decline in Poisonous metals level as the pyrolysis temperature of biochar increases from 350 to 750 °C. Therefore, this research has shown that green and sustainable RPT biochar produced at 750 °C displayed a remarkable reduction of over 75% of non-degradable contaminants, poisonous metals and 37% biodegradable organic contaminants of dumpsites leachate.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data will be made available upon reasonable request.
References
Abdel-Shafy, H.I., Mansour, M.S.M.: Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27(4), 1275–1290 (2018). https://doi.org/10.1016/j.ejpe.2018.07.003
Abdel-Shafy, H.I., Ibrahim, A.M., Al-Sulaiman, A.M., Okasha, R.A.: Landfill leachate: sources, nature, organic composition, and treatment: an environmental overview. Ain Shams Eng. J. 15(1), 102293 (2024). https://doi.org/10.1016/j.asej.2023.102293
Abubakar, I.R., Maniruzzaman, K.M., Dano, U.L., AlShihri, F.S., AlShammari, M.S., Ahmed, S.M.S., Alrawaf, T.I.: Environmental sustainability impacts of solid waste management practices in the global south. Int. J. Environ. Res. Public Health 19(19), 12717 (2022). https://doi.org/10.3390/ijerph191912717
Adedinni, M.O., Arogundade, A.B., Ore, O.T., Adenika, C.I., Adebayo, A.S., Akinlade, G.O., Oyekunle, J.A.O.: Geophysical and geochemical study of the contaminant impact of Oke-Tage solid waste dumpsite Southwestern Nigeria. Sci. Rep. 13(1), 4704 (2023). https://doi.org/10.1038/s41598-023-31948-3
Adjovu, G.E., Stephen, H., James, D., Ahmad, S.: Measurement of total dissolved solids and total suspended solids in water systems: a review of the issues, conventional, and remote sensing techniques. Remote Sens. 15(14), 3534 (2023). https://doi.org/10.3390/rs15143534
Amalina, F., Razak, A.S.A., Krishnan, S., Sulaiman, H., Zularisam, A.W., Nasrullah, M.: Biochar production techniques utilizing biomass waste-derived materials and environmental applications—a review. J. Hazard. Mater. Adv. 7, 100134 (2022). https://doi.org/10.1016/j.hazadv.2022.100134
Ambaye, T.G., Vaccari, M., van Hullebusch, E.D., Amrane, A., Rtimi, S.: Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 18(10), 3273–3294 (2021). https://doi.org/10.1007/s13762-020-03060-w
Anne, O., Mockevičienė, I., Karčauskienė, D., Repšienė, R., Šiaudinis, G., Barčauskaitė, K., Žilė, G.: Biochar-assisted phytoremediation potential of sewage sludge contaminated soil. Sustainability 16(1), 183 (2023). https://doi.org/10.3390/su16010183
Aziz, H.A., Ramli, S.F., Hung, Y.-T.: Physicochemical technique in municipal solid waste (MSW) landfill leachate remediation: a review. Water 15(6), 1249 (2023). https://doi.org/10.3390/w15061249
B.C. Ministry of Agriculture. (2017). Nursery production guide.
Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., Dar, S.A.: Concerns and Threats of Contamination on Aquatic Ecosystems. In: Hakeem, K.R., Bhat, R.A., Qadri, H. (eds.) Bioremediation and Biotechnology. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35691-0_1
Bhateria, R., Jain, D.: Water quality assessment of lake water: a review. Sustain. Water Res. Manag. 2(2), 161–173 (2016). https://doi.org/10.1007/s40899-015-0014-7
Chiew, F.H.S.: Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 51(4), 613–625 (2006). https://doi.org/10.1623/hysj.51.4.613
Chu, G., Zhao, J., Chen, F., Dong, X., Zhou, D., Liang, N., Steinberg, C.E.W.: Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ. Pollut. 227, 372–379 (2017). https://doi.org/10.1016/j.envpol.2017.04.067
De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016). https://doi.org/10.1016/j.susmat.2016.06.002
El-Saadony, M.T., Saad, A.M., El-Wafai, N.A., Abou-Aly, H.E., Salem, H.M., Soliman, S.M., AbuQamar, S.F.: Hazardous wastes and management strategies of landfill leachates: a comprehensive review. Environ. Technol. Innov. 31, 103150 (2023). https://doi.org/10.1016/j.eti.2023.103150
Essien, J.P., Ikpe, D.I., Inam, E.D., Okon, A.O., Ebong, G.A., Benson, N.U.: Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: an environmental and human health threat. PLoS ONE 17(2), e0263279 (2022). https://doi.org/10.1371/journal.pone.0263279
Ferronato, N., Torretta, V.: Waste mismanagement in developing countries: a review of global issues. Int. J. Environ. Res. Public Health 16(6), 1060 (2019). https://doi.org/10.3390/ijerph16061060
Ghani, Ab., Yusoff, M.S., Alazaiza, M.Y.D., Akinbile, C.O., Binti Abd Manan, T.S.: Landfill leachate treatment by activated carbon (AC) from banana pseudo-stem, iron oxide nanocomposite (IOAC), and iron oxide nanoparticles (IONPs). J. Environ. Chem. Eng. 11(3), 110132 (2023). https://doi.org/10.1016/j.jece.2023.110132
Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., Liu, L.: Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capt. Sci. Technol. 4, 100059 (2022). https://doi.org/10.1016/j.ccst.2022.100059
Ibe, F.C., Opara, A.I., Amaobi, C.E., Ibe, B.O.: Environmental risk assessment of the intake of contaminants in aquifers in the vicinity of a reclaimed waste dumpsite in Owerri municipal Southeastern Nigeria. Appl Water Sci 11(2), 24 (2021). https://doi.org/10.1007/s13201-020-01355-4
Imteaz, M.A., Arulrajah, A.: Removal of heavy metals from contaminated foundry sand through repeated soil-washing. Int. J. Sustain. Eng. 14(1), 39–45 (2021). https://doi.org/10.1080/19397038.2019.1657982
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014). https://doi.org/10.2478/intox-2014-0009
Jayawardhana, Y., Kumarathilaka, P., Herath, I., & Vithanage, M. (2016). Municipal solid waste biochar for prevention of pollution from landfill leachate. In Environmental materials and waste (pp. 117–148). Elsevier, Amsterdam https://doi.org/10.1016/B978-0-12-803837-6.00006-8
Jha, S., Gaur, R., Shahabuddin, S., Tyagi, I.: Biochar as sustainable alternative and green adsorbent for the remediation of noxious pollutants: a comprehensive review. Toxics 11(2), 117 (2023). https://doi.org/10.3390/toxics11020117
Jia, M., Yu, J., Li, Z., Wu, L., Christie, P.: Effects of biochar on the migration and transformation of metal species in a highly acid soil contaminated with multiple metals and leached with solutions of different pH. Chemosphere 278, 130344 (2021). https://doi.org/10.1016/j.chemosphere.2021.130344
Koda, E., Miszkowska, A., Sieczka, A.: Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Appl. Sci. 7(6), 638 (2017). https://doi.org/10.3390/app7060638
Koets, J.: The science of _. Parks Steward. Forum (2023). https://doi.org/10.5070/p539260979
Krystosik, A., Njoroge, G., Odhiambo, L., Forsyth, J.E., Mutuku, F., LaBeaud, A.D.: Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: a call to action for solutions-based research. Front. Public Health (2020). https://doi.org/10.3389/fpubh.2019.00405
Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q.: Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072
Li, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K.: Sources and consequences of groundwater contamination. Arch. Environ. Contam. Toxicol. 80(1), 1–10 (2021). https://doi.org/10.1007/s00244-020-00805-z
Lindamulla, L., Nanayakkara, N., Othman, M., Jinadasa, S., Herath, G., Jegatheesan, V.: Municipal solid waste landfill leachate characteristics and their treatment options in tropical countries. Curr. Pollut. Rep. 8(3), 273–287 (2022). https://doi.org/10.1007/s40726-022-00222-x
Liu, H., Kumar, V., Yadav, V., Guo, S., Sarsaiya, S., Binod, P., Kumar Awasthi, M.: Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 12(2), 10269–10301 (2021). https://doi.org/10.1080/21655979.2021.1993536
Mckean, C. J. P. (1989). Wq_Ref_Ph_Measuring.Pdf.
Mu, H., Qiu, Q., Cheng, R., Qiu, L., Xie, K., Gao, M., Liu, G.: Adsorption-enhanced ceramic membrane filtration using fenton oxidation for advanced treatment of refinery wastewater: treatment efficiency and membrane-fouling control. Membranes 11(9), 651 (2021). https://doi.org/10.3390/membranes11090651
Mukherjee, A., Lal, R.: Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2), 313–339 (2013). https://doi.org/10.3390/agronomy3020313
Mukherjee, S., Sarkar, B., Aralappanavar, V.K., Mukhopadhyay, R., Basak, B.B., Srivastava, P., Bolan, N.: Biochar-microorganism interactions for organic pollutant remediation: challenges and perspectives. Environ. Pollut. 308, 119609 (2022). https://doi.org/10.1016/j.envpol.2022.119609
Murtaza, G., Ahmed, Z., Dai, D.-Q., Iqbal, R., Bawazeer, S., Usman, M., Ali, I.: A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Front. Environ. Sci. (2022). https://doi.org/10.3389/fenvs.2022.1035865
Nair, A.T.: Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. Aerobiologia 37(2), 185–203 (2021). https://doi.org/10.1007/s10453-021-09693-9
Ngoc, N.T.M., Chuyen, N., Thao, N.T.T., Duc, N.Q., Trang, N.T.T., Binh, N.T.T., Thuc, P.: Chromium, cadmium, lead, and arsenic concentrations in water, vegetables, and seafood consumed in a coastal area in Northern Vietnam. Environ. Health Insights 14, 117863022092141 (2020). https://doi.org/10.1177/1178630220921410
Nicholas, H.L., Mabbett, I., Apsey, H., Robertson, I.: Physico-chemical properties of waste derived biochar from community scale faecal sludge treatment plants. Gates Open Research 6, 96 (2022). https://doi.org/10.12688/gatesopenres.13727.2
Orihel, D.M., Baulch, H.M., Casson, N.J., North, R.L., Parsons, C.T., Seckar, D.C.M., Venkiteswaran, J.J.: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Can. J. Fish. Aquat. Sci. 74(12), 2005–2029 (2017). https://doi.org/10.1139/cjfas-2016-0500
Osman, A.I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A.M., Fahim, R.A., Rooney, D.W.: Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environ. Chem. Lett. 20(4), 2385–2485 (2022). https://doi.org/10.1007/s10311-022-01424-x
Parvin, F., Tareq, S.M.: Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment. Appl Water Sci 11(6), 100 (2021). https://doi.org/10.1007/s13201-021-01431-3
Phiri, Z., Moja, N.T., Nkambule, T.T.I., de Kock, L.-A.: Utilization of biochar for remediation of heavy metals in aqueous environments: a review and bibliometric analysis. Heliyon 10(4), e25785 (2024). https://doi.org/10.1016/j.heliyon.2024.e25785
Samaraweera, H., Palansooriya, K.N., Dissanayake, P.D., Khan, A.H., Sillanpää, M., Mlsna, T.: Sustainable phosphate removal using Mg/Ca-modified biochar hybrids: current trends and future outlooks. Case Stud. Chem. Environ. Eng. 8, 100528 (2023). https://doi.org/10.1016/j.cscee.2023.100528
Samuel, P.O., Edo, G.I., Oloni, G.O., Ugbune, U., Ezekiel, G.O., Essaghah, A.E.A., Agbo, J.J.: Effects of chemical contaminants on the ecology and evolution of organisms a review. Chem. Ecol. (2023). https://doi.org/10.1080/02757540.2023.2284158
Siggins, A., Thorn, C., Healy, M.G., Abram, F.: Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate. J. Hazard. Mater. 403, 123676 (2021). https://doi.org/10.1016/j.jhazmat.2020.123676
Song, J., Li, M., Wang, C., Fan, Y., Li, Y., Wang, Y., Wang, H.: Enhanced treatment of landfill leachate by biochar-based aerobic denitrifying bacteria functional microbial materials: Preparation and performance. Front. Microbiol. (2023). https://doi.org/10.3389/fmicb.2023.1139650
Soria, R.I., Rolfe, S.A., Betancourth, M.P., Thornton, S.F.: The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. Heliyon 6(11), e05388 (2020). https://doi.org/10.1016/j.heliyon.2020.e05388
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. (2012). Heavy Metal Toxic. Environ. https://doi.org/10.1007/978-3-7643-8340-4_6
Tomczyk, A., Sokołowska, Z., Boguta, P.: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/technol. 19(1), 191–215 (2020). https://doi.org/10.1007/s11157-020-09523-3
Van Poucke, R., Allaert, S., Ok, Y.S., Pala, M., Ronsse, F., Tack, F.M.G., Meers, E.: Metal sorption by biochars: a trade-off between phosphate and carbonate concentration as governed by pyrolysis conditions. J. Environ. Manage. 246, 496–504 (2019). https://doi.org/10.1016/j.jenvman.2019.05.112
Vaverková, M.D., Elbl, J., Koda, E., Adamcová, D., Bilgin, A., Lukas, V., Zloch, J.: Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability 12(11), 4531 (2020). https://doi.org/10.3390/su12114531
Velkushanova, K., Reddy, M., Zikalala, T., Gumbi, B., Archer, C., Ward, B. J., Strande, L. (2021). Laboratory procedures and methods for characterisation of faecal sludge. Methods Faecal Sludge Anal.
Wahlström, M., Laine-Ylijoki, J., Kaartinen, T., Hjelmar, O., Bendz, D. (2013). Acid neutralization capacity of waste—specification of requirement stated in landfill regulations. temanord 2009:580. J. Chem. Inform. Model. 53
Wang, H., Zhang, M., Lv, Q.: Influence of pyrolysis temperature on cadmium removal capacity and mechanism by maize straw and platanus leaves biochars. Int. J. Environ. Res. Public Health 16(5), 845 (2019). https://doi.org/10.3390/ijerph16050845
Wang, X., Guo, Z., Hu, Z., Zhang, J.: Recent advances in biochar application for water and wastewater treatment: a review. PeerJ 8, e9164 (2020). https://doi.org/10.7717/peerj.9164
Wdowczyk, A., Szymańska-Pulikowska, A.: Comparison of landfill leachate properties by LPI and phytotoxicity-a case study. Front. Environ. Sci. (2021). https://doi.org/10.3389/fenvs.2021.693112
Yaashikaa, P.R., Kumar, P.S., Varjani, S., Saravanan, A.: A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 28, e00570 (2020). https://doi.org/10.1016/j.btre.2020.e00570
Yang, Q., Wu, L., Zheng, Z., Chen, J., Lu, T., Lu, M., Qi, Z.: Sorption of Cd(II) and Ni(II) on biochars produced in nitrogen and air-limitation environments with various pyrolysis temperatures: comparison in mechanism and performance. Colloid. Surf. a: Physicochem. Eng. Asp. 635, 128100 (2022). https://doi.org/10.1016/j.colsurfa.2021.128100
Zhang, G., Liu, N., Luo, Y., Zhang, H., Su, L., Oh, K., Cheng, H.: Efficient removal of Cu(II), Zn(II), and Cd(II) from aqueous solutions by a mineral-rich biochar derived from a spent mushroom (Agaricus bisporus) substrate. Materials 14(1), 35 (2020). https://doi.org/10.3390/ma14010035
Acknowledgements
We will like to express our profound gratitude to Maureen MarrisDinzei (dinzeimaureen@gmail.com) of the Department of Educational Administration (English) Faculty of Education, Delta State University, Abraka who took her time to proofread and edit this manuscript before it was published.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
UU, GE, JA, BK were responsible for the conception and design of the study; UU, GE performed data collection. UU, GE performed data analysis and drafted the article. UU, GE supervised the study, contributed to data analysis, interpretation, and critical revisions. All authors approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests.
Ethical approval
Not applicable.
Consent to participant
Not applicable.
Consent for publication
Not applicable.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ugbune, U., Edo, G.I., Avwenaghegha, J.O. et al. Studies of biochar prepared with different temperatures on sorption of urban wastes leachate. Proc.Indian Natl. Sci. Acad. (2024). https://doi.org/10.1007/s43538-024-00332-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s43538-024-00332-8