[go: up one dir, main page]

Skip to main content
Log in

Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic field-induced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavy-quark transports, and the phenomena closely related to chiral anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Rafelski, B. Muller, Magnetic splitting of quasimolecular electronic states in strong fields. Phys. Rev. Lett. 36, 517 (1976). doi:10.1103/PhysRevLett.36.517

    Article  Google Scholar 

  2. D.N. Voskresensky, NYu. Anisimov, Properties of a pion condensate in a magnetic field. Sov. Phys. JETP 51, 13–22 (1980)

    Google Scholar 

  3. S. Schramm, B. Muller, A.J. Schramm, Quark—anti-quark condensates in strong magnetic fields. Mod. Phys. Lett. A 7, 973–982 (1992). doi:10.1142/S0217732392000860

    Article  Google Scholar 

  4. S. Schramm, B. Muller, A.J. Schramm, Exact Dirac propagator in a magnetic ’sheet’. Phys. Lett. A 164, 28 (1992). doi:10.1016/0375-9601(92)90900-7

    Article  Google Scholar 

  5. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’. Nucl. Phys. A 803, 227–253 (2008). doi:10.1016/j.nuclphysa.2008.02.298

    Article  Google Scholar 

  6. V. Skokov, A. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925–5932 (2009). doi:10.1142/S0217751X09047570

    Article  Google Scholar 

  7. V. Voronyuk, V.D. Toneev, W. Cassing et al., (Electro-)Magnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 83, 054911 (2011). doi:10.1103/PhysRevC.83.054911

    Article  Google Scholar 

  8. A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett.B 710, 171–174 (2012). doi:10.1016/j.physletb.2012.02.065

    Article  Google Scholar 

  9. L. Ou, B.A. Li, Magnetic effects in heavy-ion collisions at intermediate energies. Phys. Rev. C 84, 064605 (2011). doi:10.1103/PhysRevC.84.064605

    Article  Google Scholar 

  10. W.T. Deng, X.G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). doi:10.1103/PhysRevC.85.044907

    Article  Google Scholar 

  11. J. Bloczynski, X.G. Huang, X.L. Zhang et al., Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys. Lett. B 718, 1529–1535 (2013). doi:10.1016/j.physletb.2012.12.030

    Article  Google Scholar 

  12. J. Bloczynski, X.G. Huang, X.L. Zhang et al., Charge-dependent azimuthal correlations from AuAu to UU collisions. Nucl. Phys. A 939, 85–100 (2015). doi:10.1016/j.nuclphysa.2015.03.012

    Article  Google Scholar 

  13. Y. Zhong, C.-B. Yang, X. Cai et al., A systematic study of magnetic field in relativistic heavy-ion collisions in the RHIC and LHC energy regions. Adv. High Energy Phys. 2014, 193039 (2014). doi:10.1155/2014/193039

    Article  Google Scholar 

  14. Y. Zhong, C.-B. Yang, X. Cai et al., Spatial distributions of magnetic field in the RHIC and LHC energy regions. Chin. Phys. C 39, 104105 (2015). doi:10.1088/1674-1137/39/10/104105

    Article  Google Scholar 

  15. H. Li, X.L. Sheng, Q. Wang, Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions (2016). arXiv:1602.02223

  16. R. Holliday, K. Tuchin, Classical electromagnetic fields from quantum sources in heavy-ion collisions (2016). arXiv:1604.04572

  17. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). doi:10.1103/PhysRevD.78.074033

    Article  Google Scholar 

  18. D.T. Son, A.R. Zhitnitsky, Quantum anomalies in dense matter. Phys. Rev. D 70, 074018 (2004). doi:10.1103/PhysRevD.70.074018

    Article  Google Scholar 

  19. M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005). doi:10.1103/PhysRevD.72.045011

    Article  Google Scholar 

  20. D.E. Kharzeev, H.-U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). doi:10.1103/PhysRevD.83.085007

    Article  Google Scholar 

  21. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field. Phys. Rev. D 83, 085003 (2011). doi:10.1103/PhysRevD.83.085003

    Article  MATH  Google Scholar 

  22. Y. Burnier, D,E. Kharzeev, J.F. Liao et al., Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys. Rev. Lett. 107, 052303 (2011). doi:10.1103/PhysRevLett.107.052303

    Article  Google Scholar 

  23. K. Marasinghe, K. Tuchin, Quarkonium dissociation in quark-gluon plasma via ionization in magnetic field. Phys. Rev. C 84, 044908 (2011). doi:10.1103/PhysRevC.84.044908

    Article  Google Scholar 

  24. D.L. Yang, B. Muller, \(J/\psi \) production by magnetic excitation of \(\eta _c\). J. Phys. G 39, 015007 (2012). doi:10.1088/0954-3899/39/1/015007

    Article  Google Scholar 

  25. C.S. Machado, F.S. Navarra, E.G. de Oliveira et al., Heavy quarkonium production in a strong magnetic field. Phys. Rev. D 88, 034009 (2013). doi:10.1103/PhysRevD.88.034009

    Article  Google Scholar 

  26. C.S. Machado, S.I. Finazzo, R.D. Matheus et al., Modification of the \(B\) meson mass in a magnetic field from QCD sum rules. Phys. Rev. D 89, 074027 (2014). doi:10.1103/PhysRevD.89.074027

    Article  Google Scholar 

  27. J. Alford, M. Strickland, Charmonia and bottomonia in a magnetic field. Phys. Rev. D 88, 105017 (2013). doi:10.1103/PhysRevD.88.105017

    Article  Google Scholar 

  28. Y.P. Liu, C. Greiner, C.M. Ko, Spin asymmetry of J/psi in peripheral Pb + Pb collisions at LHC (2014). arXiv:1403.4317

  29. S. Cho, K. Hattori, S.H. Lee et al., QCD sum rules for magnetically induced mixing between \(\eta _c\) and \(J/\psi \). Phys. Rev. Lett. 113, 172301 (2014). doi:10.1103/PhysRevLett.113.172301

    Article  Google Scholar 

  30. S. Cho, K. Hattori, S.H. Lee et al., Charmonium spectroscopy in strong magnetic fields by QCD sum rules: S-wave ground states. Phys. Rev. D 91, 045025 (2015). doi:10.1103/PhysRevD.91.045025

    Article  Google Scholar 

  31. P. Gubler, K. Hattori, S.H. Lee et al., D mesons in a magnetic field. Phys. Rev. D 93, 054026 (2016). doi:10.1103/PhysRevD.93.054026

    Article  Google Scholar 

  32. C. Bonati, M. D’Elia, M. Mariti et al., Anisotropy of the quark-antiquark potential in a magnetic field. Phys. Rev. D 89, 114502 (2014). doi:10.1103/PhysRevD.89.114502

    Article  Google Scholar 

  33. C. Bonati, M. D’Elia, Massimo, A. Rucci, Heavy quarkonia in strong magnetic fields. Phys. Rev. D 92, 054014 (2015). doi:10.1103/PhysRevD.92.054014

    Article  Google Scholar 

  34. C. Bonati, M. D’Elia, M. Mariti et al., Magnetic field effects on the static quark potential at zero and finite temperature. Phys. Rev. D 94, 094007 (2016). doi:10.1103/PhysRevD.94.094007

    Article  Google Scholar 

  35. R. Rougemont, R. Critelli, J. Noronha, Anisotropic heavy quark potential in strongly-coupled \(\cal{N}=4\) SYM in a magnetic field. Phys. Rev. D 91, 066001 (2015). doi:10.1103/PhysRevD.91.066001

    Article  Google Scholar 

  36. D. Dudal, T.G. Mertens, Melting of charmonium in a magnetic field from an effective AdS/QCD model. Phys. Rev. D 91, 086002 (2015). doi:10.1103/PhysRevD.91.086002

    Article  Google Scholar 

  37. X.Y. Guo, S.Z. Shi, N. Xu et al., Magnetic field effect on charmonium production in high energy nuclear collisions. Phys. Lett. B 751, 215–219 (2015). doi:10.1016/j.physletb.2015.10.038

    Article  Google Scholar 

  38. K. Suzuki, T. Yoshida, Cigar-shaped quarkonia under strong magnetic field. Phys. Rev. D 93, 051502 (2016). doi:10.1103/PhysRevD.93.051502

    Article  Google Scholar 

  39. T. Yoshida, K. Suzuki, Heavy meson spectroscopy under strong magnetic field. Phys. Rev. D 94, 074043 (2016). doi:10.1103/PhysRevD.94.074043

    Article  Google Scholar 

  40. K. Fukushima, K. Hattori, Koichi, H.-U. Yee et al., Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow. Phys. Rev. D 93, 074028 (2016). doi:10.1103/PhysRevD.93.074028

    Article  Google Scholar 

  41. S. I. Finazzo, R. Critelli, R. Rougemont, et al., Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields (2016). arXiv:1605.06061

  42. S.K. Das, S. Plumari, S. Chatterjee, et al., Directed flow of charm quarks induced by the initial magnetic field at LHC (2016). arXiv:1608.02231

  43. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions. Phys. Lett. B 349, 477–483 (1995). doi:10.1016/0370-2693(95)00232-A

    Article  MATH  Google Scholar 

  44. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions. Phys. Rev. Lett. 73, 3499–3502 (1994). doi:10.1103/PhysRevLett.73.3499

    Article  Google Scholar 

  45. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249–290 (1996). doi:10.1016/0550-3213(96)00021-1

    Article  Google Scholar 

  46. I.A. Shovkovy, Magnetic catalysis: a review. Lect. Notes Phys. 871, 13–49 (2013). doi:10.1007/978-3-642-37305-3_2

    Article  Google Scholar 

  47. F. Preis, A. Rebhan, A. Schmitt, Inverse magnetic catalysis in dense holographic matter. JHEP 03, 033 (2011). doi:10.1007/JHEP03(2011)033

    Article  MATH  Google Scholar 

  48. G.S. Bali, F. Bruckmann, G. Endrodi et al., The QCD phase diagram for external magnetic fields. JHEP 02, 044 (2012). doi:10.1007/JHEP02(2012)044

    Article  MATH  Google Scholar 

  49. G.S. Bali, F. Bruckmann, G. Endrodi et al., QCD quark condensate in external magnetic fields. Phys. Rev. D 86, 071502 (2012). doi:10.1103/PhysRevD.86.071502

    Article  Google Scholar 

  50. F. Bruckmann, G. Endrodi, T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop. JHEP 04, 112 (2013). doi:10.1007/JHEP04(2013)112

    Article  Google Scholar 

  51. K. Fukushima, J.M. Pawlowski, Magnetic catalysis in hot and dense quark matter and quantum fluctuations. Phys. Rev. D 86, 076013 (2012). doi:10.1103/PhysRevD.86.076013

    Article  Google Scholar 

  52. K. Fukushima, Y. Hidaka, Magnetic catalysis versus magnetic inhibition. Phys. Rev. Lett. 110, 031601 (2013). doi:10.1103/PhysRevLett.110.031601

    Article  Google Scholar 

  53. T. Kojo, N. Su, The quark mass gap in a magnetic field. Phys. Lett.B 720, 192–197 (2013). doi:10.1016/j.physletb.2013.02.024

    Article  Google Scholar 

  54. J.Y. Chao, P.C. Chu, M. Huang, Inverse magnetic catalysis induced by sphalerons. Phys. Rev. D 88, 054009 (2013). doi:10.1103/PhysRevD.88.054009

    Article  Google Scholar 

  55. L. Yu, H. Liu, M. Huang, Spontaneous generation of local CP violation and inverse magnetic catalysis. Phys. Rev. D 90, 074009 (2014). doi:10.1103/PhysRevD.90.074009

    Article  Google Scholar 

  56. B. Feng, D.F. Hou, H.C. Ren, Magnetic and inverse magnetic catalysis in the Bose-Einstein condensation of neutral bound pairs. Phys. Rev. D 92, 065011 (2015). doi:10.1103/PhysRevD.92.065011

    Article  Google Scholar 

  57. L. Yu, J. Van Doorsselaere, M. Huang, Inverse magnetic catalysis in the three-flavor NJL model with axial-vector interaction. Phys. Rev. D 91, 074011 (2015). doi:10.1103/PhysRevD.91.074011

    Article  Google Scholar 

  58. G.Q. Cao, L.Y. He, P.F. Zhuang, Collective modes and Kosterlitz–Thouless transition in a magnetic field in the planar Nambu-Jona-Lasino model. Phys. Rev. D 90, 056005 (2014). doi:10.1103/PhysRevD.90.056005

    Article  Google Scholar 

  59. E.J. Ferrer, V. de la Incera, X.J. Wen, Quark antiscreening at strong magnetic field and inverse magnetic catalysis. Phys. Rev. D 91, 054006 (2015). doi:10.1103/PhysRevD.91.054006

    Article  Google Scholar 

  60. J. Braun, W.A. Mian, S. Rechenberger, Delayed magnetic catalysis. Phys. Lett. B 755, 265–269 (2016). doi:10.1016/j.physletb.2016.02.017

    Article  Google Scholar 

  61. N. Mueller, J.M. Pawlowski, Magnetic catalysis and inverse magnetic catalysis in QCD. Phys. Rev. D 91, 116010 (2015). doi:10.1103/PhysRevD.91.116010

    Article  Google Scholar 

  62. K. Hattori, T. Kojo, N. Su, Mesons in strong magnetic fields: (I) General analyses. Nucl. Phys. A 951, 1–30 (2016). doi:10.1016/j.nuclphysa.2016.03.016

    Article  Google Scholar 

  63. M. Ruggieri, G.X. Peng, Quark matter in a parallel electric and magnetic field background: chiral phase transition and equilibration of chiral density. Phys. Rev. D 93, 094021 (2016). doi:10.1103/PhysRevD.93.094021

    Article  Google Scholar 

  64. H.L. Chen, K. Fukushima, X.G. Huang et al., Analogy between rotation and density for Dirac fermions in a magnetic field. Phys. Rev. D 93, 104052 (2016). doi:10.1103/PhysRevD.93.104052

    Article  Google Scholar 

  65. K. Hattori, Y. Yin, Charge redistribution from anomalous magneto-vorticity coupling (2016). arXiv:1607.01513

  66. S. Ebihara, K. Fukushima, K. Mameda, Boundary effects and gapped dispersion in rotating fermionic matter (2016). arXiv:1608.00336

  67. M.N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field. Phys. Rev. D 82, 085011 (2010). doi:10.1103/PhysRevD.82.085011

    Article  Google Scholar 

  68. M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model. Phys. Rev. Lett. 106, 142003 (2011). doi:10.1103/PhysRevLett.106.142003

    Article  Google Scholar 

  69. Y. Hidaka, A. Yamamoto, Charged vector mesons in a strong magnetic field. Phys. Rev. D 87, 094502 (2013). doi:10.1103/PhysRevD.87.094502

    Article  Google Scholar 

  70. H. Liu, L. Yu, M. Huang, Charged and neutral vector \(\rho \) mesons in a magnetic field. Phys. Rev. D 91, 014017 (2015). doi:10.1103/PhysRevD.91.014017

    Article  Google Scholar 

  71. H. Liu, L. Yu, M. Huang, Survival of charged rho condensation at high temperature and density. Chin. Phys. C 40, 023102 (2016). doi:10.1088/1674-1137/40/2/023102

    Article  Google Scholar 

  72. G.Q. Cao, X.G. Huang, Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum. Phys. Lett. B 757, 1–5 (2016). doi:10.1016/j.physletb.2016.03.066

    Article  Google Scholar 

  73. S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, vol. 1, (Consultants Bureau, New York, NY, 1965), p. 205

  74. E.M. Lifshitz,L.P. Pitaevskii, Transport processes in a plasma, in Physcial Kinetics, Course of Theoretical Physics, vol. 10, (Pergamon, New York, 1981)

  75. X.G. Huang, M. Huang, D.H. Rischke et al., Anisotropic hydrodynamics, bulk viscosities and R-modes of strange quark stars with strong magnetic fields. Phys. Rev. D 81, 045015 (2010). doi:10.1103/PhysRevD.81.045015

    Article  Google Scholar 

  76. X.G. Huang, A. Sedrakian, D.H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields. Ann. Phys. 326, 3075–3094 (2011). doi:10.1016/j.aop.2011.08.001

    Article  MathSciNet  MATH  Google Scholar 

  77. K. Tuchin, On viscous flow and azimuthal anisotropy of quark–gluon plasma in strong magnetic field. J. Phys. G 39, 025010 (2012). doi:10.1088/0954-3899/39/2/025010

    Article  Google Scholar 

  78. S.I. Finazzo, R. Rougemont, H. Marrochio et al., Hydrodynamic transport coefficients for the non-conformal quark–gluon plasma from holography. JHEP 02, 051 (2015). doi:10.1007/JHEP02(2015)051

    Google Scholar 

  79. K. Tuchin, Synchrotron radiation by fast fermions in heavy-ion collisions. Phys. Rev. C 82, 034904 (2010). doi:10.1103/PhysRevC.82.034904

    Article  Google Scholar 

  80. K. Tuchin, Photon decay in strong magnetic field in heavy-ion collisions. Phys. Rev. C 83, 017901 (2011). doi:10.1103/PhysRevC.83.017901

    Article  Google Scholar 

  81. K. Tuchin, Electromagnetic radiation by quark-gluon plasma in a magnetic field. Phys. Rev. C 87, 024912 (2013). doi:10.1103/PhysRevC.87.024912

    Article  Google Scholar 

  82. K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013). doi:10.1155/2013/490495

    Article  MathSciNet  Google Scholar 

  83. K. Tuchin, Synchrotron radiation of vector bosons at relativistic colliders. Phys. Rev. D 91, 033004 (2015). doi:10.1103/PhysRevD.91.033004

    Article  Google Scholar 

  84. K. Tuchin, Role of magnetic field in photon excess in heavy ion collisions. Phys. Rev. C 91, 014902 (2015). doi:10.1103/PhysRevC.91.014902

    Article  Google Scholar 

  85. G. Basar, D. Kharzeev, D. Kharzeev et al., Conformal anomaly as a source of soft photons in heavy ion collisions. Phys. Rev. Lett. 109, 202303 (2012). doi:10.1103/PhysRevLett.109.202303

    Article  Google Scholar 

  86. K. Fukushima, K. Mameda, Wess–Zumino–Witten action and photons from the chiral magnetic effect. Phys. Rev. D 86, 071501 (2012). doi:10.1103/PhysRevD.86.071501

    Article  Google Scholar 

  87. K. Hattori, K. Itakura, S. Ozaki, Neutral-pion reactions induced by chiral anomaly in strong magnetic fields (2013). arXiv:1305.7224

  88. A. Ayala, J.D. Castano-Yepes, C.A. Dominguez, et al., Thermal photon production from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions (2016). arXiv:1604.02713

  89. B.G. Zakharov, Effect of magnetic field on the photon radiation from quark-gluon plasma in heavy ion collisions (2016). arXiv:1609.04324

  90. D. Kharzeev, K. Landsteiner, A. Schmitt et al., Strongly interacting matter in magnetic fields. Lect. Notes Phys. 871, 1–624 (2013). doi:10.1007/978-3-642-37305-3

    Article  MATH  Google Scholar 

  91. J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD in a magnetic field: a review. Rev. Mod. Phys. 88, 025001 (2016). doi:10.1103/RevModPhys.88.025001

    Article  Google Scholar 

  92. V.A. Miransky, I.A. Shovkovy, Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals. Phys. Rep. 576, 1–209 (2015). doi:10.1016/j.physrep.2015.02.003

    Article  Google Scholar 

  93. X.G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rep. Prog. Phys. 79, 076302 (2016). doi:10.1088/0034-4885/79/7/076302

    Article  Google Scholar 

  94. S.A. Olausen, V.M. Kaspi, The McGill magnetar catalog. Astrophys. J. Suppl. 212, 6 (2014). doi:10.1088/0067-0049/212/1/6

    Article  Google Scholar 

  95. R. Turolla, S. Zane, A. Watts, Magnetars: the physics behind observations. A review. Rep. Prog. Phys. 78, 116901 (2015). doi:10.1088/0034-4885/78/11/116901

    Article  Google Scholar 

  96. P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log. JHEP 05, 051 (2003). doi:10.1088/1126-6708/2003/05/051

    Article  Google Scholar 

  97. S. Gupta, The Electrical conductivity and soft photon emissivity of the QCD plasma. Phys. Lett. B 597, 57–62 (2004). doi:10.1016/j.physletb.2004.05.079

    Article  Google Scholar 

  98. G. Aarts, C. Allton, J. Foley et al., Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD. Phys. Rev. Lett. 99, 022002 (2007). doi:10.1103/PhysRevLett.99.022002

    Article  Google Scholar 

  99. H.-T. Ding, A. Francis, O. Kaczmarek et al., Thermal dilepton rate and electrical conductivity: an analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev. D 83, 034504 (2011). doi:10.1103/PhysRevD.83.034504

    Article  Google Scholar 

  100. A. Francis, O. Kaczmarek, On the temperature dependence of the electrical conductivity in hot quenched lattice QCD. Prog. Part. Nucl. Phys. 67, 212–217 (2012). doi:10.1016/j.ppnp.2011.12.020

    Article  Google Scholar 

  101. H.-T. Ding, O. Kaczmarek, F. Meyer, Vector spectral functions and transport properties in quenched QCD, in Proceedings, 32nd International Symposium on Lattice Field Theory (Lattice 2014): Brookhaven, NY, USA, June 23–28, 2014

  102. B.B. Brandt, A. Francis, H.B. Meyer et al., Thermal correlators in the \(\rho \) channel of two-flavor QCD. JHEP 03, 100 (2013). doi:10.1007/JHEP03(2013)100

    Article  Google Scholar 

  103. A. Amato, G. Aarts, C. Allton et al., Electrical conductivity of the quark–gluon plasma across the deconfinement transition. Phys. Rev. Lett. 111, 172001 (2013). doi:10.1103/PhysRevLett.111.172001

    Article  Google Scholar 

  104. G. Aarts, C. Allton, A. Amato et al., Electrical conductivity and charge diffusion in thermal QCD from the lattice. JHEP 02, 186 (2015). doi:10.1007/JHEP02(2015)186

    Article  MathSciNet  Google Scholar 

  105. H.-T. Ding, O. Kaczmarek, F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice. Phys. Rev. D 94, 034504 (2016). doi:10.1103/PhysRevD.94.034504

    Article  Google Scholar 

  106. H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). doi:10.1142/S0218301315300076

    Article  MATH  Google Scholar 

  107. K. Tuchin, Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C 88, 024911 (2013). doi:10.1103/PhysRevC.88.024911

    Article  Google Scholar 

  108. K. Tuchin, Electromagnetic field and the chiral magnetic effect in the quark–gluon plasma. Phys. Rev. C 91, 064902 (2015). doi:10.1103/PhysRevC.91.064902

    Article  Google Scholar 

  109. K. Tuchin, Electromagnetic fields in high energy heavy-ion collisions. Int. J. Mod. Phys. E 23, 1430001 (2014). doi:10.1142/S021830131430001X

    Article  Google Scholar 

  110. K. Tuchin, Initial value problem for magnetic fields in heavy ion collisions. Int. J. Mod. Phys. Rev. C 93, 014905 (2016). doi:10.1103/PhysRevC.93.014905

    Google Scholar 

  111. U. Gursoy, D. Kharzeev, K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 89, 054905 (2014). doi:10.1103/PhysRevC.89.054905

    Article  Google Scholar 

  112. B.G. Zakharov, Electromagnetic response of quark? Cgluon plasma in heavy-ion collisions. Phys. Lett. B 737, 262–266 (2014). doi:10.1016/j.physletb.2014.08.068

    Article  Google Scholar 

  113. L. McLerran, V. Skokov, Comments about the electromagnetic field in heavy-ion collisions. Nucl. Phys. A 929, 184–190 (2014). doi:10.1016/j.nuclphysa.2014.05.008

    Article  Google Scholar 

  114. Y. Hirono, M. Hongo, T. Hirano, Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions. Phys. Rev. C 90, 021903 (2014). doi:10.1103/PhysRevC.90.021903

    Article  Google Scholar 

  115. W.-T. Deng, X.-G. Huang, Electric fields and chiral magnetic effect in Cu + Au collisions. Phys. Lett. B 742, 296–302 (2015). doi:10.1016/j.physletb.2015.01.050

    Article  Google Scholar 

  116. V. Voronyuk, V.D. Toneev, S.A. Voloshin et al., Charge-dependent directed flow in asymmetric nuclear collisions. Phys. Rev. C 90, 064903 (2014). doi:10.1103/PhysRevC.90.064903

    Article  Google Scholar 

  117. V. Toneev, O. Rogachevsky, V. Voronyuk, Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions (2016). arXiv:1604.06231

  118. S. Chatterjee, P. Tribedy, Separation of flow from the chiral magnetic effect in U + U collisions using spectator asymmetry. Phys. Rev. C 92, 011902 (2015). doi:10.1103/PhysRevC.92.011902

    Article  Google Scholar 

  119. A. Rybicki, A. Szczurek, M. Klusek-Gawenda, Charge splitting of directed flow and charge-dependent effects in pion spectra in heavy ion collisions, in Proceedings, 10th Workshop on Particle Correlations and Femtoscopy (WPCF 2014): Gyongyos, Hungary, August 25–29, 2014

  120. L. Adamczyk, et al., Charge-dependent directed flow in Cu + Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV (2016). arXiv:1608.04100

  121. D.E. Kharzeev, Topologically induced local P and CP violation in QCD x QED. Ann. Phys. 325, 205–218 (2010). doi:10.1016/j.aop.2009.11.002

    Article  MATH  Google Scholar 

  122. D.E. Kharzeev, The chiral magnetic eEffect and anomaly-iInduced transport. Prog. Part. Nucl. Phys. 75, 133–151 (2014). doi:10.1016/j.ppnp.2014.01.002

    Article  Google Scholar 

  123. K. Fukushima, Views of the chiral magnetic effect. Lect. Notes Phys. 871, 241–259 (2013). doi:10.1007/978-3-642-37305-3_9

    Article  Google Scholar 

  124. D.E. Kharzeev, Topology, magnetic field, and strongly interacting matter. Ann. Rev. Nucl. Part. Sci. 65, 193–214 (2015). doi:10.1146/annurev-nucl-102313-025420

    Article  Google Scholar 

  125. J.F. Liao, Anomalous transport effects and possible environmental symmetry ‘violation’ in heavy-ion collisions. Pramana 84, 901–926 (2015). doi:10.1007/s12043-015-0984-x

    Article  Google Scholar 

  126. D.E. Kharzeev, J. Liao, S.A. Voloshin et al., Chiral magnetic and vortical effects in high-energy nuclear collisions? A status report. Prog. Part. Nucl. Phys. 88, 1–28 (2016). doi:10.1016/j.ppnp.2016.01.001

    Article  Google Scholar 

  127. A. Vilenkin, Equilibrium parity violating current in a magnetic field. Phys. Rev. D 22, 3080–3084 (1980). doi:10.1103/PhysRevD.22.3080

    Article  Google Scholar 

  128. Q. Li, D.E. Kharzeev, C. Zhang et al., Observation of the chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016). doi:10.1038/nphys3648

    Article  Google Scholar 

  129. J. Xiong, S.K. Kushwaha, T. Liang et al., Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field. Science 350, 413 (2015)

    Article  MathSciNet  Google Scholar 

  130. F. Arnold et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 1615 (2016). doi:10.1038/ncomms11615

    Article  Google Scholar 

  131. X. Huang et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Phys. Rev. X 5, 031023 (2015). arXiv:1506.06577

  132. M.A. Zubkov, Absence of equilibrium chiral magnetic effect. Phys. Rev. D 93, 105036 (2016). doi:10.1103/PhysRevD.93.105036

    Article  Google Scholar 

  133. D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006). doi:10.1016/j.physletb.2005.11.075

    Article  Google Scholar 

  134. I. Iatrakis, S. Lin, Y. Yin, The anomalous transport of axial charge: topological vs non-topological fluctuations. JHEP 09, 030 (2015). doi:10.1007/JHEP09(2015)030

    Article  MathSciNet  Google Scholar 

  135. N.S. Manton, Topology in the Weinberg–Salam theory. Phys. Rev. D 28, 2019 (1983). doi:10.1103/PhysRevD.28.2019

    Article  MathSciNet  Google Scholar 

  136. F.R. Klinkhamer, N.S. Manton, A saddle point solution in the Weinberg–Salam theory. Phys. Rev. D 30, 2212 (1984). doi:10.1103/PhysRevD.30.2212

    Article  Google Scholar 

  137. D. Kharzeev, A. Krasnitz, R. Venugopalan, Anomalous chirality fluctuations in the initial stage of heavy ion collisions and parity odd bubbles. Phys. Lett. B 545, 298–306 (2002). doi:10.1016/S0370-2693(02)02630-8

    Article  MATH  Google Scholar 

  138. T. Lappi, L. McLerran, Some features of the glasma. Nucl. Phys. A 772, 200–212 (2006). doi:10.1016/j.nuclphysa.2006.04.001

    Article  Google Scholar 

  139. Y. Hirono, T. Hirano, D.E. Kharzeev, The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics (2014). arXiv:1412.0311

  140. S.A. Voloshin, Parity violation in hot QCD: how to detect it. Phys. Rev. C 70, 057901 (2004). doi:10.1103/PhysRevC.70.057901

    Article  Google Scholar 

  141. B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009). doi:10.1103/PhysRevLett.103.251601

    Article  Google Scholar 

  142. B.I. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81, 054908 (2010). doi:10.1103/PhysRevC.81.054908

    Article  Google Scholar 

  143. L. Adamczyk et al., Fluctuations of charge separation perpendicular to the event plane and local parity violation in \(\sqrt{s_{NN}}=200\) GeV Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 88, 064911 (2013). doi:10.1103/PhysRevC.88.064911

    Article  Google Scholar 

  144. N.N. Ajitanand, R.A. Lacey, A. Taranenko et al., A New method for the experimental study of topological effects in the quark–gluon plasma. Phys. Rev. C 83, 011901 (2011). doi:10.1103/PhysRevC.83.011901

    Article  Google Scholar 

  145. B. Abelev et al., Charge separation relative to the reaction plane in Pb–Pb collisions at \(\sqrt{{s_{NN}}}= 2.76\) TeV. Phys. Rev. Lett. 110, 012301 (2013). doi:10.1103/PhysRevLett.110.012301

    Article  Google Scholar 

  146. G. Wang, Search for chiral magnetic effects in high-energy nuclear collisions, in Proceedings, 23rd International Conference on Ultrarelativistic Nucleus–Nucleus Collisions: Quark Matter 2012 (QM 2012): Washington, DC, USA, August 13-18, 2012. Nucl. Phys. A 904–905, 248c–255c (2013). doi:10.1016/j.nuclphysa.2013.01.069

  147. L. Adamczyk et al., Beam-energy dependence of charge separation along the magnetic field in Au + Au collisions at RHIC. Phys. Rev. Lett. 113, 052302 (2014). doi:10.1103/PhysRevLett.113.052302

    Article  Google Scholar 

  148. S. Pratt, Alternative contributions to the angular correlations observed at RHIC associated with parity fluctuations (2010). arXiv:1002.1758

  149. S. Pratt, S. Schlichting, S. Gavin, Effects of momentum conservation and flow on angular correlations at RHIC. Phys. Rev. C 84, 024909 (2011). doi:10.1103/PhysRevC.84.024909

    Article  Google Scholar 

  150. A. Bzdak, V. Koch, J.F. Liao, Azimuthal correlations from transverse momentum conservation and possible local parity violation. Phys. Rev. C 83, 014905 (2011). doi:10.1103/PhysRevC.83.014905

    Article  Google Scholar 

  151. S. Schlichting, S. Pratt, Effects of charge conservation and flow on fluctuations of parity-odd observables ar RHIC (2010) arXiv:1005.5341

  152. S. Schlichting, S. Pratt, Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables. Phys. Rev. C 83, 014913 (2011). doi:10.1103/PhysRevC.83.014913

    Article  Google Scholar 

  153. F. Wen, L. Wen, G. Wang, Procedure for removing flow backgrounds from the charge-separation observable perpendicular to the reaction plane in heavy-ion collisions (2016). arXiv:1608.03205

  154. F. Wang, J. Zhao, Challenges in flow background removal in search for the chiral magnetic effect (2016). arXiv:1608.06610

  155. S.A. Voloshin, Testing the chiral magnetic effect with central U + U collisions. Phys. Rev. Lett. 105, 172301 (2010). doi:10.1103/PhysRevLett.105.172301

    Article  Google Scholar 

  156. L. Adamczyk et al., Azimuthal anisotropy in U\(+\)U and Au\(+\)Au collisions at RHIC. Phys. Rev. Lett. 115, 222301 (2015). doi:10.1103/PhysRevLett.115.222301

    Article  Google Scholar 

  157. Q.Y. Shou, harge asymmetry dependency of \(\pi \)/K anisotropic flow in U + U \(\sqrt{{s}_{NN}} =\) 193 GeV and Au + Au \(\sqrt{{s}_{NN}} =\) 200 GeV collisions at STAR. J. Phys. Conf. Ser. 509, 012033 (2014). doi:10.1088/1742-6596/509/1/012033

    Article  Google Scholar 

  158. W.T. Deng, X.G. Huang, G.L. Ma, et al., Test the chiral magnetic effect with isobaric collisions (2016) arXiv:1607.04697

  159. V. Skokov, P. Sorensen, V. Koch, et al., Chiral magnetic effect task force report (2016) arXiv:1608.00982

  160. V. Khachatryan, Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect (2016). arXiv:1610.00263

  161. G.M. Newman, D.T. Son, Response of strongly-interacting matter to magnetic field: some exact results. Phys. Rev. D 73, 045006 (2006). doi:10.1103/PhysRevD.73.045006

    Article  Google Scholar 

  162. O. Bergman, G. Lifschytz, M. Lippert, Magnetic properties of dense holographic QCD. Phys. Rev. D 79, 105024 (2009). doi:10.1103/PhysRevD.79.105024

    Article  Google Scholar 

  163. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field. Phys. Rev. C 80, 032801 (2009). doi:10.1103/PhysRevC.80.032801

    Article  Google Scholar 

  164. G. Basar, G.V. Dunne, D.E. Kharzeev, Chiral magnetic spiral. Phys. Rev. Lett. 104, 232301 (2010). doi:10.1103/PhysRevLett.104.232301

    Article  Google Scholar 

  165. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry and axial anomaly in magnetized relativistic matter. Phys. Lett. B 695, 354–358 (2011). doi:10.1016/j.physletb.2010.11.022

    Article  Google Scholar 

  166. D.K. Hong, Anomalous currents in dense matter under a magneticield. Phys. Lett. B 699, 305–308 (2011). doi:10.1016/j.physletb.2011.04.010

    Article  Google Scholar 

  167. K. Landsteiner, E. Megias, F. Pena-Benitez, Gravitational anomaly and transport. Phys. Rev. Lett. 107, 021601 (2011). doi:10.1103/PhysRevLett.107.021601

    Article  MATH  Google Scholar 

  168. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy et al., Radiative corrections to chiral separation effect in QED. Phys. Rev. D 88, 025025 (2013). doi:10.1103/PhysRevD.88.025025

    Article  Google Scholar 

  169. N. Yamamoto, Generalized Bloch theorem and chiral transport phenomena. Phys. Rev. D 92, 085011 (2015). doi:10.1103/PhysRevD.92.085011

    Article  Google Scholar 

  170. X.G. Huang, Simulating chiral magnetic and separation effects with spin-orbit coupled atomic gases. Sci. Rep. 6, 20601 (2016). doi:10.1038/srep20601

    Article  Google Scholar 

  171. M. Stephanov, H.-U. Yee, Y. Yin, Collective modes of chiral kinetic theory in a magnetic field. Phys. Rev. D 91, 125014 (2015). doi:10.1103/PhysRevD.91.125014

    Article  Google Scholar 

  172. Y. Burnier, D.E. Kharzeev, J. Liao, et al., From the chiral magnetic wave to the charge dependence of elliptic flow (2012). arXiv:1208.2537

  173. S.F. Taghavi, U.A. Wiedemann, Chiral magnetic wave in an expanding QCD fluid. Phys. Rev. C 91, 024902 (2015). doi:10.1103/PhysRevC.91.024902

    Article  Google Scholar 

  174. H.-U. Yee, Y. Yin, Realistic implementation of chiral magnetic wave in heavy ion collisions. Phys. Rev. C 89, 044909 (2014). doi:10.1103/PhysRevC.89.044909

    Article  Google Scholar 

  175. H. Ke, Charge asymmetry dependency of \(\pi ^{+}/\pi ^{-}\) elliptic flow in Au + Au collisions at \(\sqrt{s_{NN}}\) =200 GeV. J. Phys. Conf. Ser. 389, 012035 (2012). doi:10.1088/1742-6596/389/1/012035

    Article  Google Scholar 

  176. L. Adamczyk et al., Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015). doi:10.1103/PhysRevLett.114.252302

    Article  Google Scholar 

  177. J. Adam et al., Charge-dependent flow and the search for the chiral magnetic wave in Pb–Pb collisions at \(\sqrt{s_{\rm NN}} =\) 2.76 TeV. Phys. Rev. C 93, 044903 (2016). doi:10.1103/PhysRevC.93.044903

    Article  Google Scholar 

  178. M. Stephanov, H.-U. Yee, Charged elliptic flow at zero charge asymmetry. Phys. Rev. C 88, 014908 (2013). doi:10.1103/PhysRevC.88.014908

    Article  Google Scholar 

  179. J.C. Dunlop, M.A. Lisa, P. Sorensen, Constituent quark scaling violation due to baryon number transport. Phys. Rev. C 84, 044914 (2011). doi:10.1103/PhysRevC.84.044914

    Article  Google Scholar 

  180. J. Xu, L.W. Chen, C.M. Ko et al., Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions. Phys. Rev. C 85, 041901 (2012). doi:10.1103/PhysRevC.85.041901

    Article  Google Scholar 

  181. C.M. Ko, T. Song, F. Li et al., Partonic mean-field effects on matter and antimatter elliptic flows. Nucl. Phys. A 928, 234–246 (2014). doi:10.1016/j.nuclphysa.2014.05.016

    Article  Google Scholar 

  182. A. Bzdak, P. Bozek, Contributions to the event-by-event charge asymmetry dependence for the elliptic flow of \(pi^{+}\) and \(pi^{-}\) in heavy-ion collisions. Phys. Lett. B 726, 239–243 (2013). doi:10.1016/j.physletb.2013.08.003

    Article  Google Scholar 

  183. Y. Hatta, A. Monnai, B.W. Xiao, Elliptic flow difference of charged pions in heavy-ion collisions. Nucl. Phys. A 947, 155–160 (2016). doi:10.1016/j.nuclphysa.2015.12.009

    Article  Google Scholar 

  184. X.G. Huang, J.F. Liao, Axial current generation from electric field: chiral electric separation effect. Phys. Rev. Lett. 110, 232302 (2013). doi:10.1103/PhysRevLett.110.232302

    Article  Google Scholar 

  185. Y. Jiang, X.G. Huang, J.F. Liao, Chiral electric separation effect in the quark–gluon plasma. Phys. Rev. D 91, 045001 (2015). doi:10.1103/PhysRevD.91.045001

    Article  Google Scholar 

  186. S. Pu, S.Y. Wu, D.L. Yang, Holographic chiral electric separation effect. Phys. Rev. D 89, 085024 (2014). doi:10.1103/PhysRevD.89.085024

    Article  Google Scholar 

  187. S. Pu, S.Y. Wu, D.L. Yang, Chiral hall effect and chiral electric waves. Phys. Rev. D 91, 025011 (2015). doi:10.1103/PhysRevD.91.025011

    Article  Google Scholar 

  188. G.L. Ma, X.G. Huang, Possible observables for the chiral electric separation effect in Cu + Au collisions. Phys. Rev. C 91, 054901 (2015). doi:10.1103/PhysRevC.91.054901

    Article  Google Scholar 

  189. D. Kharzeev, A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A 797, 67–79 (2007). doi:10.1016/j.nuclphysa.2007.10.001

    Article  Google Scholar 

  190. J. Erdmenger, M. Haack, M. Kaminski et al., Fluid dynamics of R-charged black holes. JHEP 01, 055 (2009). doi:10.1088/1126-6708/2009/01/055

    Article  MathSciNet  MATH  Google Scholar 

  191. N. Banerjee, J. Bhattacharya, S. Bhattacharyya et al., Hydrodynamics from charged black branes. JHEP 01, 094 (2011). doi:10.1007/JHEP01(2011)094

    Article  MATH  Google Scholar 

  192. D.T. Son, P. Surowka, Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009). doi:10.1103/PhysRevLett.103.191601

    Article  MathSciNet  Google Scholar 

  193. Y. Jiang, X.G. Huang, J.F. Liao, Chiral vortical wave and induced flavor charge transport in a rotating quark–gluon plasma. Phys. Rev. D 92, 071501 (2015). doi:10.1103/PhysRevD.92.07150

    Article  Google Scholar 

  194. L.P. Csernai, V.K. Magas, D.J. Wang, Flow vorticity in peripheral high energy heavy ion collisions. Phys. Rev. C 87, 034906 (2013). doi:10.1103/PhysRevC.87.034906

    Article  Google Scholar 

  195. F. Becattini, G. Inghirami, V. Rolando et al., A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C 75, 406 (2015). doi:10.1140/epjc/s10052-015-3624-1

    Article  Google Scholar 

  196. Y. Jiang, Z.W. Lin, J.F. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions (2016). arXiv:1602.06580

  197. W.T. Deng, X.G. Huang, Vorticity in heavy-ion collisions. Phys. Rev. C 93, 064907 (2016). doi:10.1103/PhysRevC.93.06490

    Article  Google Scholar 

  198. D.E. Kharzeev, D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys. Rev. Lett. 106, 062301 (2011). doi:10.1103/PhysRevLett.106.062301

    Article  Google Scholar 

  199. F. Zhao, \(\Lambda (K_S^0)?Ch^\pm \) and \(\Lambda -p\) azimuthal correlations with respect to event plane and search for chiral magnetic and vortical effects. Nucl. Phys. A 931, 746–751 (2014). doi:10.1016/j.nuclphysa.2014.08.108

    Article  Google Scholar 

  200. M. D’Elia, F. Negro, Chiral properties of strong interactions in a magnetic background. Phys. Rev. D 83, 114028 (2011). doi:10.1103/PhysRevD.83.114028

    Article  Google Scholar 

  201. G.S. Bali, F. Bruckmann, G. Endrodi et al., Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD. JHEP 04, 130 (2013). doi:10.1007/JHEP04(2013)130

    Article  MathSciNet  MATH  Google Scholar 

  202. A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions. Eur. Phys. J. C 76, 107 (2016). doi:10.1140/epjc/s10052-015-3819-5

    Article  Google Scholar 

  203. M.A. Andreichikov, V.D. Orlovsky, YuA Simonov, Asymptotic freedom in strong magnetic fields. Phys. Rev. Lett. 110, 162002 (2013). doi:10.1103/PhysRevLett.110.162002

    Article  Google Scholar 

  204. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky et al., Meson spectrum in strong magnetic fields. Phys. Rev. D 87, 094029 (2013). doi:10.1103/PhysRevD.87.094029

    Article  Google Scholar 

  205. B.B. Brandt, G. Bali, G. Endrodi, et al., QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions. PoS, 265 (2016). arXiv:1510.03899 doi:10.1103/PhysRevD.87.094029

  206. E.V. Luschevskaya, O.E. Solovjeva, O.A. Kochetkov et al., Magnetic polarizabilities of light mesons in \(SU(3)\) lattice gauge theory. Nucl. Phys. B 898, 627–643 (2015). doi:10.1016/j.nuclphysb.2015.07.023

    Article  MathSciNet  MATH  Google Scholar 

  207. H. Taya, Hadron masses in strong magnetic fields. Phys. Rev. D 92, 014038 (2015). doi:10.1103/PhysRevD.92.014038

    Article  Google Scholar 

  208. N. Brambilla, P. Pietrulewicz, A. Vairo, Model-independent study of electric dipole transitions in quarkonium. Phys. Rev. D 85, 094005 (2012). doi:10.1103/PhysRevD.85.094005

    Article  Google Scholar 

  209. A. Pineda, J. Segovia, Improved determination of heavy quarkonium magnetic dipole transitions in potential nonrelativistic QCD. Phys. Rev. D 87, 074024 (2013). doi:10.1103/PhysRevD.87.074024

    Article  Google Scholar 

  210. E. Eichten, K. Gottfried, T. Kinoshita et al., Charmonium: the model. Phys. Rev. D 17, 3090 (1978). doi:10.1103/PhysRevD.17.3090

    Article  Google Scholar 

  211. E. Eichten, K. Gottfried, T. Kinoshita et al., Charmonium: comparison with experiment. Phys. Rev. D 21, 203 (1980). doi:10.1103/PhysRevD.21.203

    Article  Google Scholar 

  212. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951). doi:10.1103/PhysRev.82.664

    Article  MathSciNet  MATH  Google Scholar 

  213. A.V. Sadofyev, Y. Yin, The charmonium dissociation in an “ganomalous wind”. JHEP 01, 052 (2016). doi:10.1007/JHEP01(2016)052

    Article  Google Scholar 

  214. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations. Nucl. Phys. B 147, 385–447 (1979). doi:10.1016/0550-3213(79)90022-1

    Article  Google Scholar 

  215. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics: applications. Nucl. Phys. B 147, 448–518 (1979). doi:10.1016/0550-3213(79)90023-3

    Article  Google Scholar 

  216. L.J. Reinders, H. Rubinstein, S. Yazaki, Hadron properties from QCD sum rules. Phys. Rept. 127, 1 (1985). doi:10.1016/0370-1573(85)90065-1

    Article  Google Scholar 

  217. M.A. Shifman, Snapshots of hadrons or the story of how the vacuum which are produced, live and die in the QCD vacuum. Prog. Theor. Phys. Suppl. 131, 1–71 (1998). doi:10.1143/PTPS.131.1

    Article  Google Scholar 

  218. V.A. Novikov, M.A. Shifman, A.I. Vainshtein et al., Calculations in external fields in quantum chromodynamics. Technical review. Fortsch. Phys. 32, 585 (1984)

    Article  Google Scholar 

  219. S. Ozaki, K. Itakura, Y. Kuramoto, Magnetically induced QCD kondo effect (2015). arXiv:1509.06966

  220. K. Hattori, K. Itakura, S. Ozaki et al., QCD Kondo effect: quark matter with heavy-flavor impurities. Phys. Rev. D 92, 065003 (2015). doi:10.1103/PhysRevD.92.065003

    Article  Google Scholar 

  221. S. Yasui, K. Suzuki, K. Itakura, Kondo phase diagram of quark matter (2016). arXiv:1604.07208

  222. D.K. Hong, An effective field theory of QCD at high density. Phys. Lett. B 473, 118–125 (2000). doi:10.1016/S0370-2693(99)01472-0

    Article  Google Scholar 

  223. D.K. Hong, Aspects of high density effective theory in QCD. Nucl. Phys. B 582, 451–476 (2000). doi:10.1016/S0550-3213(00)00330-8

    Article  Google Scholar 

  224. T. Schefer, Hard loops, soft loops, and high density effective field theory. Nucl. Phys. A 728, 251–271 (2003). doi:10.1016/j.nuclphysa.2003.08.028

    Article  MATH  Google Scholar 

  225. D.K. Hong, Y. Kim, S.-J. Sin, RG analysis of magnetic catalysis in dynamical symmetry breaking. Phys. Rev. D 54, 7879–7883 (1996). doi:10.1103/PhysRevD.54.7879

    Article  Google Scholar 

  226. D.K. Hong, Magnetic catalysis in quantum electrodynamics. Phys. Rev. D 57, 3759–3762 (1998). doi:10.1103/PhysRevD.57.3759

    Article  Google Scholar 

  227. G.D. Moore, D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71, 064904 (2005). doi:10.1103/PhysRevC.71.064904

    Article  Google Scholar 

  228. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320–3341 (1974). doi:10.1103/PhysRevD.9.3320

    Article  Google Scholar 

  229. R. Baier, E. Pilon, On the axial anomaly at finite temperature in the Schwinger model. Z. Phys. C 52, 339–342 (1991). doi:10.1007/BF01560452

    Article  Google Scholar 

  230. K. Fukushima, Magnetic-field induced screening effect and collective excitations. Phys. Rev. D 83, 11150 (2011). doi:10.1103/PhysRevD.83.111501

    Google Scholar 

  231. K. Hattori, K. Itakura, Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Ann. Phys. 330, 23–54 (2013). doi:10.1016/j.aop.2012.11.010

    Article  MathSciNet  MATH  Google Scholar 

  232. K. Hattori, K. Itakura, Vacuum birefringence in strong magnetic fields: (II)Complex refractive index from the lowest Landau level. Ann. Phys. 334, 58–82 (2013). doi:10.1016/j.aop.2013.03.016

    Article  MathSciNet  Google Scholar 

  233. A.V. Sadofyev, Y. Yin, Drag suppression in anomalous chiral media. Phys. Rev. D 93, 125026 (2016). doi:10.1103/PhysRevD.93.125026

    Article  Google Scholar 

  234. S. Caron-Huot, G.D. Moore, Heavy quark diffusion in perturbative QCD at next-to-leading order. Phys. Rev. Lett. 100, 052301 (2008). doi:10.1103/PhysRevLett.100.052301

    Article  Google Scholar 

  235. K. Rajagopal, A.V. Sadofyev, Chiral drag force. JHEP 10, 018 (2015). doi:10.1007/JHEP10(2015)018

    Article  MathSciNet  Google Scholar 

  236. M.A. Stephanov, H.-U. Yee, No-drag frame for anomalous chiral fluid. Phys. Rev. Lett. 116, 122302 (2016). doi:10.1103/PhysRevLett.116.122302

    Article  Google Scholar 

  237. S.Y. Li, K.A. Mamo, H.-U. Yee, Jet quenching parameter of the quark–gluon plasma in a strong magnetic field: perturbative QCD and AdS/CFT correspondence. Phys. Rev. D 94, 085016 (2016). doi:10.1103/PhysRevD.94.085016

    Article  Google Scholar 

  238. K. Hattori,S.Y. Li, D. Satow, et al., Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete Leading Order (2016). arXiv:1610.06839

  239. K. Hattori, and D. Satow, Electrical conductivity of quark–gluon plasma in strong magnetic fields (2016). arXiv:1610.06818

  240. Y.-S. Oh, S. Kim, S.H. Lee, Quarkonium hadron interactions in QCD. Phys. Rev. C 65, 067901 (2002). doi:10.1103/PhysRevC.65.067901

    Article  Google Scholar 

  241. T. Song, S.H. Lee, Quarkonium–hadron interactions in perturbative QCD. Phys. Rev. D 72, 034002 (2005). doi:10.1103/PhysRevD.72.034002

    Article  Google Scholar 

Download references

Acknowledgements

K.H. thanks Kei Suzuki for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Guang Huang.

Additional information

This work was supported by Shanghai Natural Science Foundation (No. 14ZR1403000), 1000 Young Talents Program of China, and the National Natural Science Foundation of China (No. 11535012). K.H. is also supported by China Postdoctoral Science Foundation under Grant No. 2016M590312 and is grateful to support from RIKEN-BNL Research Center.

Appendix: Mixing strengths from the Bethe–Salpeter amplitudes

Appendix: Mixing strengths from the Bethe–Salpeter amplitudes

It would be instructive to see the computation of the coupling strength at the three-point vertex among two quarkonia and an external magnetic field by using the Bethe–Salpeter amplitudes obtained in the ladder approximation and the heavy-quark limit [240, 241]. This computation involves a typical technique for the perturbation theory in the presence of a magnetic field.

For the static charmonium carrying a momentum \(q = ( 2m - { \epsilon _0}, 0,0,0)\) with \({ \epsilon _0}\) being the binding energy, the Bethe–Salpeter amplitudes for \(\eta _{\rm c}\) and \(J/\psi \) are, respectively, given by

$$\begin{aligned} \Gamma ^5 (p,p-q)= & {} \left( \epsilon _0 + \frac{{\varvec{p}}^2}{m} \right) \! \sqrt{\frac{m_{ \scriptscriptstyle {c \bar{c}} }}{N_{\rm c}}} \, \psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \, P_+ \gamma ^5 P_- , \end{aligned}$$
(62)
$$\begin{aligned} \Gamma ^\mu (p,p-q)= & {} \left( \epsilon _0 + \frac{{\varvec{p}}^2}{m} \right) \! \sqrt{\frac{m_{ \scriptscriptstyle {c \bar{c}} }}{N_{\rm c}}} \, \psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \, P_+ \gamma ^\mu P_-, \end{aligned}$$
(63)

where we have the projection operators \(P_\pm = \frac{1}{2} ( 1 \pm \gamma ^0 ) \) and the ground-state wave function of the S-wave bound state \(\psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \). The mass \(m_{ \scriptscriptstyle {c \bar{c}} }\) is those of \(\eta _{\rm c}\) and \(J/\psi \), which are degenerated in the heavy-quark limit. The number of the color is \(N_{\rm c}=3\).

Fig. 21
figure 21

An effective coupling strength from triangle diagrams. Shaded vertices show form factors given by the Bethe–Salpeter amplitudes. (Reproduced from Ref. [30])

We show a calculation of a coupling strength in the mixing between \(\eta _{\rm c}\) and the longitudinal \(J/\psi \) from triangle diagrams (Fig. 21). Interactions between quarks and external magnetic fields are taken into account by employing the Fock–Schwinger gauge. In this gauge, the quark propagators with one and two insertions of constant external fields are expressed as [216]

$$\begin{aligned} S_1 (p)= & {} - \frac{i}{4} Q_\mathrm{em}F_{\alpha \beta } \frac{1}{(p^2-m^2+ i \varepsilon )^2}\nonumber \\&\times \left\{ \sigma ^{\alpha \beta } ({p\!\!/}+ m) + ( {p\!\!/}+ m) \sigma ^{\alpha \beta } \right\} \ , \end{aligned}$$
(64)
$$\begin{aligned} S_2 (p)= & {} - \frac{1}{4} Q_\mathrm{em}^2 F_{\alpha \beta } F_{\mu \nu } \frac{1}{(p^2-m^2+ i \varepsilon )^5}\nonumber \\& \times ({p\!\!/}+m) \left\{ f^{\alpha \beta \mu \nu } + f^{\alpha \mu \beta \nu } + f^{\alpha \mu \nu \beta } \right\} ({p\!\!/}+m) \ , \end{aligned}$$
(65)

where \(Q_\mathrm{em}\) denotes an electromagnetic charge of a quark and the gamma matrix structures are given by

$$\begin{aligned} \sigma ^{\alpha \beta }= & {} \frac{i}{2} [\gamma ^\alpha , \gamma ^\beta ]\ , \end{aligned}$$
(66)
$$\begin{aligned} f^{{\alpha }{\beta } {\mu }{\nu }}= & {} {\gamma }^{\alpha } ( {p\!\!/}+ m) {\gamma }^{\beta } ( {p\!\!/}+ m) {\gamma }^{\mu } ( {p\!\!/}+ m) {\gamma }^{\nu } \ . \end{aligned}$$
(67)

The coupling strength can be read off from the sum of the two diagrams \( i {\mathcal M} ^\mu = i {\mathcal M} _a^\mu + i {\mathcal M} _b^\mu \), where the each diagram is written down as

$$\begin{aligned} i {\mathcal M} _a^\mu= & {} - \!\! \int \! \frac{\hbox{d}^4p}{(2\pi )^4} \mathrm{Tr} \left[ \, \Gamma _5^\dagger (p-q,p) S_1(p) \right. \nonumber \\& \left. \times \Gamma ^\mu (p,p-q) S_0 (p-q) \, \right] \ , \end{aligned}$$
(68)
$$\begin{aligned} i {\mathcal M} _b^\mu= & {} - \!\! \int \! \frac{\hbox{d}^4p}{(2\pi )^4} \mathrm{Tr} \left[ \, \Gamma _5^\dagger (p+q,p) S_0 (p+q) \right. \nonumber \\& \left. \times \Gamma ^\mu (p,p+q) S_1(p) \, \right] \ . \end{aligned}$$
(69)

In the leading order of the heavy-quark expansion, the \( p^0\)-integral is easily performed, and we find

$$\begin{aligned} i {\mathcal M} _a^\mu= & {} i {\mathcal M} _b^\mu \nonumber \\= & {} 2 Q_\mathrm{em}\tilde{F}^{0\mu } \int \frac{ \hbox{d}^3{\varvec{p}}}{(2\pi )^3} \vert \psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \vert ^2 \ . \end{aligned}$$
(70)

From the normalization of the wave function,

$$\begin{aligned} \int \frac{ \hbox{d}^3{\varvec{p}}}{(2\pi )^3} \vert \psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \vert ^2 = 1, \end{aligned}$$
(71)

the amplitude is independent of the wave functions, and the sum of two triangle diagrams is obtained as

$$\begin{aligned} i {\mathcal M} ^\mu= & {} 4 Q_\mathrm{em}\tilde{F}^{0\mu } \ . \end{aligned}$$
(72)

By contracting with the polarization vector for the longitudinal (transverse) vector state \(\epsilon ^\mu = (0,0,0,1)\) (\(\tilde{\epsilon }^\mu = (0, n_\perp , 0)\)), the amplitude vanishes for the transverse modes as

$$\begin{aligned} i {\mathcal M} _\mu \tilde{\epsilon }^\mu= & {} 0 , \end{aligned}$$
(73)

while the longitudinal mode has a nonvanishing amplitude

$$\begin{aligned} i {\mathcal M} _\mu \epsilon ^\mu= & {} 4 Q_\mathrm{em}\tilde{F}^{0\mu } \epsilon _\mu = 4 Q_\mathrm{em}B \, . \end{aligned}$$
(74)

Therefore, the coupling strength in Eq. (25) is found to be

$$ g_{{{\text{P}}V}} = 4Q_{{{\text{em}}}} . $$
(75)

The coupling strength depends only on the electric charge and is given by \(g_{{_{\scriptscriptstyle {\mathrm {PV}}}}} = 8/3 \simeq 2.66 \) (\(g_{{_{\scriptscriptstyle {\mathrm {PV}}}}} = 4/3 \simeq 1.33 \)) for the transition between \(\eta _{\rm c}\) and \(J/\psi \) (\(\eta _b\) and \(\Upsilon \)). This is consistent with the value obtained by fitting the measured radiative decay width [see Eq. (33)], but is slightly overestimated. The radiative decay widths in \(J/\psi \rightarrow \eta _{\rm c} + \gamma \) and \(\Upsilon \rightarrow \eta _b + \gamma \) computed with the coupling strength (75) agree with the leading-order results by the potential Non-Relativistic QCD (pNRQCD) [208, 209]. The overestimate can be improved with the inclusion of the subleading terms [208, 209]. Extension to the open heavy flavors was carried out in Ref. [31].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, K., Huang, XG. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. NUCL SCI TECH 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0178-3

Keywords

Navigation