Abstract
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic field-induced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavy-quark transports, and the phenomena closely related to chiral anomaly.
Similar content being viewed by others
References
J. Rafelski, B. Muller, Magnetic splitting of quasimolecular electronic states in strong fields. Phys. Rev. Lett. 36, 517 (1976). doi:10.1103/PhysRevLett.36.517
D.N. Voskresensky, NYu. Anisimov, Properties of a pion condensate in a magnetic field. Sov. Phys. JETP 51, 13–22 (1980)
S. Schramm, B. Muller, A.J. Schramm, Quark—anti-quark condensates in strong magnetic fields. Mod. Phys. Lett. A 7, 973–982 (1992). doi:10.1142/S0217732392000860
S. Schramm, B. Muller, A.J. Schramm, Exact Dirac propagator in a magnetic ’sheet’. Phys. Lett. A 164, 28 (1992). doi:10.1016/0375-9601(92)90900-7
D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’. Nucl. Phys. A 803, 227–253 (2008). doi:10.1016/j.nuclphysa.2008.02.298
V. Skokov, A. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925–5932 (2009). doi:10.1142/S0217751X09047570
V. Voronyuk, V.D. Toneev, W. Cassing et al., (Electro-)Magnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 83, 054911 (2011). doi:10.1103/PhysRevC.83.054911
A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett.B 710, 171–174 (2012). doi:10.1016/j.physletb.2012.02.065
L. Ou, B.A. Li, Magnetic effects in heavy-ion collisions at intermediate energies. Phys. Rev. C 84, 064605 (2011). doi:10.1103/PhysRevC.84.064605
W.T. Deng, X.G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). doi:10.1103/PhysRevC.85.044907
J. Bloczynski, X.G. Huang, X.L. Zhang et al., Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys. Lett. B 718, 1529–1535 (2013). doi:10.1016/j.physletb.2012.12.030
J. Bloczynski, X.G. Huang, X.L. Zhang et al., Charge-dependent azimuthal correlations from AuAu to UU collisions. Nucl. Phys. A 939, 85–100 (2015). doi:10.1016/j.nuclphysa.2015.03.012
Y. Zhong, C.-B. Yang, X. Cai et al., A systematic study of magnetic field in relativistic heavy-ion collisions in the RHIC and LHC energy regions. Adv. High Energy Phys. 2014, 193039 (2014). doi:10.1155/2014/193039
Y. Zhong, C.-B. Yang, X. Cai et al., Spatial distributions of magnetic field in the RHIC and LHC energy regions. Chin. Phys. C 39, 104105 (2015). doi:10.1088/1674-1137/39/10/104105
H. Li, X.L. Sheng, Q. Wang, Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions (2016). arXiv:1602.02223
R. Holliday, K. Tuchin, Classical electromagnetic fields from quantum sources in heavy-ion collisions (2016). arXiv:1604.04572
K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). doi:10.1103/PhysRevD.78.074033
D.T. Son, A.R. Zhitnitsky, Quantum anomalies in dense matter. Phys. Rev. D 70, 074018 (2004). doi:10.1103/PhysRevD.70.074018
M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005). doi:10.1103/PhysRevD.72.045011
D.E. Kharzeev, H.-U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). doi:10.1103/PhysRevD.83.085007
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field. Phys. Rev. D 83, 085003 (2011). doi:10.1103/PhysRevD.83.085003
Y. Burnier, D,E. Kharzeev, J.F. Liao et al., Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys. Rev. Lett. 107, 052303 (2011). doi:10.1103/PhysRevLett.107.052303
K. Marasinghe, K. Tuchin, Quarkonium dissociation in quark-gluon plasma via ionization in magnetic field. Phys. Rev. C 84, 044908 (2011). doi:10.1103/PhysRevC.84.044908
D.L. Yang, B. Muller, \(J/\psi \) production by magnetic excitation of \(\eta _c\). J. Phys. G 39, 015007 (2012). doi:10.1088/0954-3899/39/1/015007
C.S. Machado, F.S. Navarra, E.G. de Oliveira et al., Heavy quarkonium production in a strong magnetic field. Phys. Rev. D 88, 034009 (2013). doi:10.1103/PhysRevD.88.034009
C.S. Machado, S.I. Finazzo, R.D. Matheus et al., Modification of the \(B\) meson mass in a magnetic field from QCD sum rules. Phys. Rev. D 89, 074027 (2014). doi:10.1103/PhysRevD.89.074027
J. Alford, M. Strickland, Charmonia and bottomonia in a magnetic field. Phys. Rev. D 88, 105017 (2013). doi:10.1103/PhysRevD.88.105017
Y.P. Liu, C. Greiner, C.M. Ko, Spin asymmetry of J/psi in peripheral Pb + Pb collisions at LHC (2014). arXiv:1403.4317
S. Cho, K. Hattori, S.H. Lee et al., QCD sum rules for magnetically induced mixing between \(\eta _c\) and \(J/\psi \). Phys. Rev. Lett. 113, 172301 (2014). doi:10.1103/PhysRevLett.113.172301
S. Cho, K. Hattori, S.H. Lee et al., Charmonium spectroscopy in strong magnetic fields by QCD sum rules: S-wave ground states. Phys. Rev. D 91, 045025 (2015). doi:10.1103/PhysRevD.91.045025
P. Gubler, K. Hattori, S.H. Lee et al., D mesons in a magnetic field. Phys. Rev. D 93, 054026 (2016). doi:10.1103/PhysRevD.93.054026
C. Bonati, M. D’Elia, M. Mariti et al., Anisotropy of the quark-antiquark potential in a magnetic field. Phys. Rev. D 89, 114502 (2014). doi:10.1103/PhysRevD.89.114502
C. Bonati, M. D’Elia, Massimo, A. Rucci, Heavy quarkonia in strong magnetic fields. Phys. Rev. D 92, 054014 (2015). doi:10.1103/PhysRevD.92.054014
C. Bonati, M. D’Elia, M. Mariti et al., Magnetic field effects on the static quark potential at zero and finite temperature. Phys. Rev. D 94, 094007 (2016). doi:10.1103/PhysRevD.94.094007
R. Rougemont, R. Critelli, J. Noronha, Anisotropic heavy quark potential in strongly-coupled \(\cal{N}=4\) SYM in a magnetic field. Phys. Rev. D 91, 066001 (2015). doi:10.1103/PhysRevD.91.066001
D. Dudal, T.G. Mertens, Melting of charmonium in a magnetic field from an effective AdS/QCD model. Phys. Rev. D 91, 086002 (2015). doi:10.1103/PhysRevD.91.086002
X.Y. Guo, S.Z. Shi, N. Xu et al., Magnetic field effect on charmonium production in high energy nuclear collisions. Phys. Lett. B 751, 215–219 (2015). doi:10.1016/j.physletb.2015.10.038
K. Suzuki, T. Yoshida, Cigar-shaped quarkonia under strong magnetic field. Phys. Rev. D 93, 051502 (2016). doi:10.1103/PhysRevD.93.051502
T. Yoshida, K. Suzuki, Heavy meson spectroscopy under strong magnetic field. Phys. Rev. D 94, 074043 (2016). doi:10.1103/PhysRevD.94.074043
K. Fukushima, K. Hattori, Koichi, H.-U. Yee et al., Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow. Phys. Rev. D 93, 074028 (2016). doi:10.1103/PhysRevD.93.074028
S. I. Finazzo, R. Critelli, R. Rougemont, et al., Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields (2016). arXiv:1605.06061
S.K. Das, S. Plumari, S. Chatterjee, et al., Directed flow of charm quarks induced by the initial magnetic field at LHC (2016). arXiv:1608.02231
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions. Phys. Lett. B 349, 477–483 (1995). doi:10.1016/0370-2693(95)00232-A
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions. Phys. Rev. Lett. 73, 3499–3502 (1994). doi:10.1103/PhysRevLett.73.3499
V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249–290 (1996). doi:10.1016/0550-3213(96)00021-1
I.A. Shovkovy, Magnetic catalysis: a review. Lect. Notes Phys. 871, 13–49 (2013). doi:10.1007/978-3-642-37305-3_2
F. Preis, A. Rebhan, A. Schmitt, Inverse magnetic catalysis in dense holographic matter. JHEP 03, 033 (2011). doi:10.1007/JHEP03(2011)033
G.S. Bali, F. Bruckmann, G. Endrodi et al., The QCD phase diagram for external magnetic fields. JHEP 02, 044 (2012). doi:10.1007/JHEP02(2012)044
G.S. Bali, F. Bruckmann, G. Endrodi et al., QCD quark condensate in external magnetic fields. Phys. Rev. D 86, 071502 (2012). doi:10.1103/PhysRevD.86.071502
F. Bruckmann, G. Endrodi, T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop. JHEP 04, 112 (2013). doi:10.1007/JHEP04(2013)112
K. Fukushima, J.M. Pawlowski, Magnetic catalysis in hot and dense quark matter and quantum fluctuations. Phys. Rev. D 86, 076013 (2012). doi:10.1103/PhysRevD.86.076013
K. Fukushima, Y. Hidaka, Magnetic catalysis versus magnetic inhibition. Phys. Rev. Lett. 110, 031601 (2013). doi:10.1103/PhysRevLett.110.031601
T. Kojo, N. Su, The quark mass gap in a magnetic field. Phys. Lett.B 720, 192–197 (2013). doi:10.1016/j.physletb.2013.02.024
J.Y. Chao, P.C. Chu, M. Huang, Inverse magnetic catalysis induced by sphalerons. Phys. Rev. D 88, 054009 (2013). doi:10.1103/PhysRevD.88.054009
L. Yu, H. Liu, M. Huang, Spontaneous generation of local CP violation and inverse magnetic catalysis. Phys. Rev. D 90, 074009 (2014). doi:10.1103/PhysRevD.90.074009
B. Feng, D.F. Hou, H.C. Ren, Magnetic and inverse magnetic catalysis in the Bose-Einstein condensation of neutral bound pairs. Phys. Rev. D 92, 065011 (2015). doi:10.1103/PhysRevD.92.065011
L. Yu, J. Van Doorsselaere, M. Huang, Inverse magnetic catalysis in the three-flavor NJL model with axial-vector interaction. Phys. Rev. D 91, 074011 (2015). doi:10.1103/PhysRevD.91.074011
G.Q. Cao, L.Y. He, P.F. Zhuang, Collective modes and Kosterlitz–Thouless transition in a magnetic field in the planar Nambu-Jona-Lasino model. Phys. Rev. D 90, 056005 (2014). doi:10.1103/PhysRevD.90.056005
E.J. Ferrer, V. de la Incera, X.J. Wen, Quark antiscreening at strong magnetic field and inverse magnetic catalysis. Phys. Rev. D 91, 054006 (2015). doi:10.1103/PhysRevD.91.054006
J. Braun, W.A. Mian, S. Rechenberger, Delayed magnetic catalysis. Phys. Lett. B 755, 265–269 (2016). doi:10.1016/j.physletb.2016.02.017
N. Mueller, J.M. Pawlowski, Magnetic catalysis and inverse magnetic catalysis in QCD. Phys. Rev. D 91, 116010 (2015). doi:10.1103/PhysRevD.91.116010
K. Hattori, T. Kojo, N. Su, Mesons in strong magnetic fields: (I) General analyses. Nucl. Phys. A 951, 1–30 (2016). doi:10.1016/j.nuclphysa.2016.03.016
M. Ruggieri, G.X. Peng, Quark matter in a parallel electric and magnetic field background: chiral phase transition and equilibration of chiral density. Phys. Rev. D 93, 094021 (2016). doi:10.1103/PhysRevD.93.094021
H.L. Chen, K. Fukushima, X.G. Huang et al., Analogy between rotation and density for Dirac fermions in a magnetic field. Phys. Rev. D 93, 104052 (2016). doi:10.1103/PhysRevD.93.104052
K. Hattori, Y. Yin, Charge redistribution from anomalous magneto-vorticity coupling (2016). arXiv:1607.01513
S. Ebihara, K. Fukushima, K. Mameda, Boundary effects and gapped dispersion in rotating fermionic matter (2016). arXiv:1608.00336
M.N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field. Phys. Rev. D 82, 085011 (2010). doi:10.1103/PhysRevD.82.085011
M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model. Phys. Rev. Lett. 106, 142003 (2011). doi:10.1103/PhysRevLett.106.142003
Y. Hidaka, A. Yamamoto, Charged vector mesons in a strong magnetic field. Phys. Rev. D 87, 094502 (2013). doi:10.1103/PhysRevD.87.094502
H. Liu, L. Yu, M. Huang, Charged and neutral vector \(\rho \) mesons in a magnetic field. Phys. Rev. D 91, 014017 (2015). doi:10.1103/PhysRevD.91.014017
H. Liu, L. Yu, M. Huang, Survival of charged rho condensation at high temperature and density. Chin. Phys. C 40, 023102 (2016). doi:10.1088/1674-1137/40/2/023102
G.Q. Cao, X.G. Huang, Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum. Phys. Lett. B 757, 1–5 (2016). doi:10.1016/j.physletb.2016.03.066
S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, vol. 1, (Consultants Bureau, New York, NY, 1965), p. 205
E.M. Lifshitz,L.P. Pitaevskii, Transport processes in a plasma, in Physcial Kinetics, Course of Theoretical Physics, vol. 10, (Pergamon, New York, 1981)
X.G. Huang, M. Huang, D.H. Rischke et al., Anisotropic hydrodynamics, bulk viscosities and R-modes of strange quark stars with strong magnetic fields. Phys. Rev. D 81, 045015 (2010). doi:10.1103/PhysRevD.81.045015
X.G. Huang, A. Sedrakian, D.H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields. Ann. Phys. 326, 3075–3094 (2011). doi:10.1016/j.aop.2011.08.001
K. Tuchin, On viscous flow and azimuthal anisotropy of quark–gluon plasma in strong magnetic field. J. Phys. G 39, 025010 (2012). doi:10.1088/0954-3899/39/2/025010
S.I. Finazzo, R. Rougemont, H. Marrochio et al., Hydrodynamic transport coefficients for the non-conformal quark–gluon plasma from holography. JHEP 02, 051 (2015). doi:10.1007/JHEP02(2015)051
K. Tuchin, Synchrotron radiation by fast fermions in heavy-ion collisions. Phys. Rev. C 82, 034904 (2010). doi:10.1103/PhysRevC.82.034904
K. Tuchin, Photon decay in strong magnetic field in heavy-ion collisions. Phys. Rev. C 83, 017901 (2011). doi:10.1103/PhysRevC.83.017901
K. Tuchin, Electromagnetic radiation by quark-gluon plasma in a magnetic field. Phys. Rev. C 87, 024912 (2013). doi:10.1103/PhysRevC.87.024912
K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013). doi:10.1155/2013/490495
K. Tuchin, Synchrotron radiation of vector bosons at relativistic colliders. Phys. Rev. D 91, 033004 (2015). doi:10.1103/PhysRevD.91.033004
K. Tuchin, Role of magnetic field in photon excess in heavy ion collisions. Phys. Rev. C 91, 014902 (2015). doi:10.1103/PhysRevC.91.014902
G. Basar, D. Kharzeev, D. Kharzeev et al., Conformal anomaly as a source of soft photons in heavy ion collisions. Phys. Rev. Lett. 109, 202303 (2012). doi:10.1103/PhysRevLett.109.202303
K. Fukushima, K. Mameda, Wess–Zumino–Witten action and photons from the chiral magnetic effect. Phys. Rev. D 86, 071501 (2012). doi:10.1103/PhysRevD.86.071501
K. Hattori, K. Itakura, S. Ozaki, Neutral-pion reactions induced by chiral anomaly in strong magnetic fields (2013). arXiv:1305.7224
A. Ayala, J.D. Castano-Yepes, C.A. Dominguez, et al., Thermal photon production from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions (2016). arXiv:1604.02713
B.G. Zakharov, Effect of magnetic field on the photon radiation from quark-gluon plasma in heavy ion collisions (2016). arXiv:1609.04324
D. Kharzeev, K. Landsteiner, A. Schmitt et al., Strongly interacting matter in magnetic fields. Lect. Notes Phys. 871, 1–624 (2013). doi:10.1007/978-3-642-37305-3
J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD in a magnetic field: a review. Rev. Mod. Phys. 88, 025001 (2016). doi:10.1103/RevModPhys.88.025001
V.A. Miransky, I.A. Shovkovy, Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals. Phys. Rep. 576, 1–209 (2015). doi:10.1016/j.physrep.2015.02.003
X.G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rep. Prog. Phys. 79, 076302 (2016). doi:10.1088/0034-4885/79/7/076302
S.A. Olausen, V.M. Kaspi, The McGill magnetar catalog. Astrophys. J. Suppl. 212, 6 (2014). doi:10.1088/0067-0049/212/1/6
R. Turolla, S. Zane, A. Watts, Magnetars: the physics behind observations. A review. Rep. Prog. Phys. 78, 116901 (2015). doi:10.1088/0034-4885/78/11/116901
P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log. JHEP 05, 051 (2003). doi:10.1088/1126-6708/2003/05/051
S. Gupta, The Electrical conductivity and soft photon emissivity of the QCD plasma. Phys. Lett. B 597, 57–62 (2004). doi:10.1016/j.physletb.2004.05.079
G. Aarts, C. Allton, J. Foley et al., Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD. Phys. Rev. Lett. 99, 022002 (2007). doi:10.1103/PhysRevLett.99.022002
H.-T. Ding, A. Francis, O. Kaczmarek et al., Thermal dilepton rate and electrical conductivity: an analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev. D 83, 034504 (2011). doi:10.1103/PhysRevD.83.034504
A. Francis, O. Kaczmarek, On the temperature dependence of the electrical conductivity in hot quenched lattice QCD. Prog. Part. Nucl. Phys. 67, 212–217 (2012). doi:10.1016/j.ppnp.2011.12.020
H.-T. Ding, O. Kaczmarek, F. Meyer, Vector spectral functions and transport properties in quenched QCD, in Proceedings, 32nd International Symposium on Lattice Field Theory (Lattice 2014): Brookhaven, NY, USA, June 23–28, 2014
B.B. Brandt, A. Francis, H.B. Meyer et al., Thermal correlators in the \(\rho \) channel of two-flavor QCD. JHEP 03, 100 (2013). doi:10.1007/JHEP03(2013)100
A. Amato, G. Aarts, C. Allton et al., Electrical conductivity of the quark–gluon plasma across the deconfinement transition. Phys. Rev. Lett. 111, 172001 (2013). doi:10.1103/PhysRevLett.111.172001
G. Aarts, C. Allton, A. Amato et al., Electrical conductivity and charge diffusion in thermal QCD from the lattice. JHEP 02, 186 (2015). doi:10.1007/JHEP02(2015)186
H.-T. Ding, O. Kaczmarek, F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice. Phys. Rev. D 94, 034504 (2016). doi:10.1103/PhysRevD.94.034504
H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). doi:10.1142/S0218301315300076
K. Tuchin, Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C 88, 024911 (2013). doi:10.1103/PhysRevC.88.024911
K. Tuchin, Electromagnetic field and the chiral magnetic effect in the quark–gluon plasma. Phys. Rev. C 91, 064902 (2015). doi:10.1103/PhysRevC.91.064902
K. Tuchin, Electromagnetic fields in high energy heavy-ion collisions. Int. J. Mod. Phys. E 23, 1430001 (2014). doi:10.1142/S021830131430001X
K. Tuchin, Initial value problem for magnetic fields in heavy ion collisions. Int. J. Mod. Phys. Rev. C 93, 014905 (2016). doi:10.1103/PhysRevC.93.014905
U. Gursoy, D. Kharzeev, K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 89, 054905 (2014). doi:10.1103/PhysRevC.89.054905
B.G. Zakharov, Electromagnetic response of quark? Cgluon plasma in heavy-ion collisions. Phys. Lett. B 737, 262–266 (2014). doi:10.1016/j.physletb.2014.08.068
L. McLerran, V. Skokov, Comments about the electromagnetic field in heavy-ion collisions. Nucl. Phys. A 929, 184–190 (2014). doi:10.1016/j.nuclphysa.2014.05.008
Y. Hirono, M. Hongo, T. Hirano, Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions. Phys. Rev. C 90, 021903 (2014). doi:10.1103/PhysRevC.90.021903
W.-T. Deng, X.-G. Huang, Electric fields and chiral magnetic effect in Cu + Au collisions. Phys. Lett. B 742, 296–302 (2015). doi:10.1016/j.physletb.2015.01.050
V. Voronyuk, V.D. Toneev, S.A. Voloshin et al., Charge-dependent directed flow in asymmetric nuclear collisions. Phys. Rev. C 90, 064903 (2014). doi:10.1103/PhysRevC.90.064903
V. Toneev, O. Rogachevsky, V. Voronyuk, Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions (2016). arXiv:1604.06231
S. Chatterjee, P. Tribedy, Separation of flow from the chiral magnetic effect in U + U collisions using spectator asymmetry. Phys. Rev. C 92, 011902 (2015). doi:10.1103/PhysRevC.92.011902
A. Rybicki, A. Szczurek, M. Klusek-Gawenda, Charge splitting of directed flow and charge-dependent effects in pion spectra in heavy ion collisions, in Proceedings, 10th Workshop on Particle Correlations and Femtoscopy (WPCF 2014): Gyongyos, Hungary, August 25–29, 2014
L. Adamczyk, et al., Charge-dependent directed flow in Cu + Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV (2016). arXiv:1608.04100
D.E. Kharzeev, Topologically induced local P and CP violation in QCD x QED. Ann. Phys. 325, 205–218 (2010). doi:10.1016/j.aop.2009.11.002
D.E. Kharzeev, The chiral magnetic eEffect and anomaly-iInduced transport. Prog. Part. Nucl. Phys. 75, 133–151 (2014). doi:10.1016/j.ppnp.2014.01.002
K. Fukushima, Views of the chiral magnetic effect. Lect. Notes Phys. 871, 241–259 (2013). doi:10.1007/978-3-642-37305-3_9
D.E. Kharzeev, Topology, magnetic field, and strongly interacting matter. Ann. Rev. Nucl. Part. Sci. 65, 193–214 (2015). doi:10.1146/annurev-nucl-102313-025420
J.F. Liao, Anomalous transport effects and possible environmental symmetry ‘violation’ in heavy-ion collisions. Pramana 84, 901–926 (2015). doi:10.1007/s12043-015-0984-x
D.E. Kharzeev, J. Liao, S.A. Voloshin et al., Chiral magnetic and vortical effects in high-energy nuclear collisions? A status report. Prog. Part. Nucl. Phys. 88, 1–28 (2016). doi:10.1016/j.ppnp.2016.01.001
A. Vilenkin, Equilibrium parity violating current in a magnetic field. Phys. Rev. D 22, 3080–3084 (1980). doi:10.1103/PhysRevD.22.3080
Q. Li, D.E. Kharzeev, C. Zhang et al., Observation of the chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016). doi:10.1038/nphys3648
J. Xiong, S.K. Kushwaha, T. Liang et al., Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field. Science 350, 413 (2015)
F. Arnold et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 1615 (2016). doi:10.1038/ncomms11615
X. Huang et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Phys. Rev. X 5, 031023 (2015). arXiv:1506.06577
M.A. Zubkov, Absence of equilibrium chiral magnetic effect. Phys. Rev. D 93, 105036 (2016). doi:10.1103/PhysRevD.93.105036
D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006). doi:10.1016/j.physletb.2005.11.075
I. Iatrakis, S. Lin, Y. Yin, The anomalous transport of axial charge: topological vs non-topological fluctuations. JHEP 09, 030 (2015). doi:10.1007/JHEP09(2015)030
N.S. Manton, Topology in the Weinberg–Salam theory. Phys. Rev. D 28, 2019 (1983). doi:10.1103/PhysRevD.28.2019
F.R. Klinkhamer, N.S. Manton, A saddle point solution in the Weinberg–Salam theory. Phys. Rev. D 30, 2212 (1984). doi:10.1103/PhysRevD.30.2212
D. Kharzeev, A. Krasnitz, R. Venugopalan, Anomalous chirality fluctuations in the initial stage of heavy ion collisions and parity odd bubbles. Phys. Lett. B 545, 298–306 (2002). doi:10.1016/S0370-2693(02)02630-8
T. Lappi, L. McLerran, Some features of the glasma. Nucl. Phys. A 772, 200–212 (2006). doi:10.1016/j.nuclphysa.2006.04.001
Y. Hirono, T. Hirano, D.E. Kharzeev, The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics (2014). arXiv:1412.0311
S.A. Voloshin, Parity violation in hot QCD: how to detect it. Phys. Rev. C 70, 057901 (2004). doi:10.1103/PhysRevC.70.057901
B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009). doi:10.1103/PhysRevLett.103.251601
B.I. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81, 054908 (2010). doi:10.1103/PhysRevC.81.054908
L. Adamczyk et al., Fluctuations of charge separation perpendicular to the event plane and local parity violation in \(\sqrt{s_{NN}}=200\) GeV Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 88, 064911 (2013). doi:10.1103/PhysRevC.88.064911
N.N. Ajitanand, R.A. Lacey, A. Taranenko et al., A New method for the experimental study of topological effects in the quark–gluon plasma. Phys. Rev. C 83, 011901 (2011). doi:10.1103/PhysRevC.83.011901
B. Abelev et al., Charge separation relative to the reaction plane in Pb–Pb collisions at \(\sqrt{{s_{NN}}}= 2.76\) TeV. Phys. Rev. Lett. 110, 012301 (2013). doi:10.1103/PhysRevLett.110.012301
G. Wang, Search for chiral magnetic effects in high-energy nuclear collisions, in Proceedings, 23rd International Conference on Ultrarelativistic Nucleus–Nucleus Collisions: Quark Matter 2012 (QM 2012): Washington, DC, USA, August 13-18, 2012. Nucl. Phys. A 904–905, 248c–255c (2013). doi:10.1016/j.nuclphysa.2013.01.069
L. Adamczyk et al., Beam-energy dependence of charge separation along the magnetic field in Au + Au collisions at RHIC. Phys. Rev. Lett. 113, 052302 (2014). doi:10.1103/PhysRevLett.113.052302
S. Pratt, Alternative contributions to the angular correlations observed at RHIC associated with parity fluctuations (2010). arXiv:1002.1758
S. Pratt, S. Schlichting, S. Gavin, Effects of momentum conservation and flow on angular correlations at RHIC. Phys. Rev. C 84, 024909 (2011). doi:10.1103/PhysRevC.84.024909
A. Bzdak, V. Koch, J.F. Liao, Azimuthal correlations from transverse momentum conservation and possible local parity violation. Phys. Rev. C 83, 014905 (2011). doi:10.1103/PhysRevC.83.014905
S. Schlichting, S. Pratt, Effects of charge conservation and flow on fluctuations of parity-odd observables ar RHIC (2010) arXiv:1005.5341
S. Schlichting, S. Pratt, Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables. Phys. Rev. C 83, 014913 (2011). doi:10.1103/PhysRevC.83.014913
F. Wen, L. Wen, G. Wang, Procedure for removing flow backgrounds from the charge-separation observable perpendicular to the reaction plane in heavy-ion collisions (2016). arXiv:1608.03205
F. Wang, J. Zhao, Challenges in flow background removal in search for the chiral magnetic effect (2016). arXiv:1608.06610
S.A. Voloshin, Testing the chiral magnetic effect with central U + U collisions. Phys. Rev. Lett. 105, 172301 (2010). doi:10.1103/PhysRevLett.105.172301
L. Adamczyk et al., Azimuthal anisotropy in U\(+\)U and Au\(+\)Au collisions at RHIC. Phys. Rev. Lett. 115, 222301 (2015). doi:10.1103/PhysRevLett.115.222301
Q.Y. Shou, harge asymmetry dependency of \(\pi \)/K anisotropic flow in U + U \(\sqrt{{s}_{NN}} =\) 193 GeV and Au + Au \(\sqrt{{s}_{NN}} =\) 200 GeV collisions at STAR. J. Phys. Conf. Ser. 509, 012033 (2014). doi:10.1088/1742-6596/509/1/012033
W.T. Deng, X.G. Huang, G.L. Ma, et al., Test the chiral magnetic effect with isobaric collisions (2016) arXiv:1607.04697
V. Skokov, P. Sorensen, V. Koch, et al., Chiral magnetic effect task force report (2016) arXiv:1608.00982
V. Khachatryan, Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect (2016). arXiv:1610.00263
G.M. Newman, D.T. Son, Response of strongly-interacting matter to magnetic field: some exact results. Phys. Rev. D 73, 045006 (2006). doi:10.1103/PhysRevD.73.045006
O. Bergman, G. Lifschytz, M. Lippert, Magnetic properties of dense holographic QCD. Phys. Rev. D 79, 105024 (2009). doi:10.1103/PhysRevD.79.105024
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field. Phys. Rev. C 80, 032801 (2009). doi:10.1103/PhysRevC.80.032801
G. Basar, G.V. Dunne, D.E. Kharzeev, Chiral magnetic spiral. Phys. Rev. Lett. 104, 232301 (2010). doi:10.1103/PhysRevLett.104.232301
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry and axial anomaly in magnetized relativistic matter. Phys. Lett. B 695, 354–358 (2011). doi:10.1016/j.physletb.2010.11.022
D.K. Hong, Anomalous currents in dense matter under a magneticield. Phys. Lett. B 699, 305–308 (2011). doi:10.1016/j.physletb.2011.04.010
K. Landsteiner, E. Megias, F. Pena-Benitez, Gravitational anomaly and transport. Phys. Rev. Lett. 107, 021601 (2011). doi:10.1103/PhysRevLett.107.021601
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy et al., Radiative corrections to chiral separation effect in QED. Phys. Rev. D 88, 025025 (2013). doi:10.1103/PhysRevD.88.025025
N. Yamamoto, Generalized Bloch theorem and chiral transport phenomena. Phys. Rev. D 92, 085011 (2015). doi:10.1103/PhysRevD.92.085011
X.G. Huang, Simulating chiral magnetic and separation effects with spin-orbit coupled atomic gases. Sci. Rep. 6, 20601 (2016). doi:10.1038/srep20601
M. Stephanov, H.-U. Yee, Y. Yin, Collective modes of chiral kinetic theory in a magnetic field. Phys. Rev. D 91, 125014 (2015). doi:10.1103/PhysRevD.91.125014
Y. Burnier, D.E. Kharzeev, J. Liao, et al., From the chiral magnetic wave to the charge dependence of elliptic flow (2012). arXiv:1208.2537
S.F. Taghavi, U.A. Wiedemann, Chiral magnetic wave in an expanding QCD fluid. Phys. Rev. C 91, 024902 (2015). doi:10.1103/PhysRevC.91.024902
H.-U. Yee, Y. Yin, Realistic implementation of chiral magnetic wave in heavy ion collisions. Phys. Rev. C 89, 044909 (2014). doi:10.1103/PhysRevC.89.044909
H. Ke, Charge asymmetry dependency of \(\pi ^{+}/\pi ^{-}\) elliptic flow in Au + Au collisions at \(\sqrt{s_{NN}}\) =200 GeV. J. Phys. Conf. Ser. 389, 012035 (2012). doi:10.1088/1742-6596/389/1/012035
L. Adamczyk et al., Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015). doi:10.1103/PhysRevLett.114.252302
J. Adam et al., Charge-dependent flow and the search for the chiral magnetic wave in Pb–Pb collisions at \(\sqrt{s_{\rm NN}} =\) 2.76 TeV. Phys. Rev. C 93, 044903 (2016). doi:10.1103/PhysRevC.93.044903
M. Stephanov, H.-U. Yee, Charged elliptic flow at zero charge asymmetry. Phys. Rev. C 88, 014908 (2013). doi:10.1103/PhysRevC.88.014908
J.C. Dunlop, M.A. Lisa, P. Sorensen, Constituent quark scaling violation due to baryon number transport. Phys. Rev. C 84, 044914 (2011). doi:10.1103/PhysRevC.84.044914
J. Xu, L.W. Chen, C.M. Ko et al., Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions. Phys. Rev. C 85, 041901 (2012). doi:10.1103/PhysRevC.85.041901
C.M. Ko, T. Song, F. Li et al., Partonic mean-field effects on matter and antimatter elliptic flows. Nucl. Phys. A 928, 234–246 (2014). doi:10.1016/j.nuclphysa.2014.05.016
A. Bzdak, P. Bozek, Contributions to the event-by-event charge asymmetry dependence for the elliptic flow of \(pi^{+}\) and \(pi^{-}\) in heavy-ion collisions. Phys. Lett. B 726, 239–243 (2013). doi:10.1016/j.physletb.2013.08.003
Y. Hatta, A. Monnai, B.W. Xiao, Elliptic flow difference of charged pions in heavy-ion collisions. Nucl. Phys. A 947, 155–160 (2016). doi:10.1016/j.nuclphysa.2015.12.009
X.G. Huang, J.F. Liao, Axial current generation from electric field: chiral electric separation effect. Phys. Rev. Lett. 110, 232302 (2013). doi:10.1103/PhysRevLett.110.232302
Y. Jiang, X.G. Huang, J.F. Liao, Chiral electric separation effect in the quark–gluon plasma. Phys. Rev. D 91, 045001 (2015). doi:10.1103/PhysRevD.91.045001
S. Pu, S.Y. Wu, D.L. Yang, Holographic chiral electric separation effect. Phys. Rev. D 89, 085024 (2014). doi:10.1103/PhysRevD.89.085024
S. Pu, S.Y. Wu, D.L. Yang, Chiral hall effect and chiral electric waves. Phys. Rev. D 91, 025011 (2015). doi:10.1103/PhysRevD.91.025011
G.L. Ma, X.G. Huang, Possible observables for the chiral electric separation effect in Cu + Au collisions. Phys. Rev. C 91, 054901 (2015). doi:10.1103/PhysRevC.91.054901
D. Kharzeev, A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A 797, 67–79 (2007). doi:10.1016/j.nuclphysa.2007.10.001
J. Erdmenger, M. Haack, M. Kaminski et al., Fluid dynamics of R-charged black holes. JHEP 01, 055 (2009). doi:10.1088/1126-6708/2009/01/055
N. Banerjee, J. Bhattacharya, S. Bhattacharyya et al., Hydrodynamics from charged black branes. JHEP 01, 094 (2011). doi:10.1007/JHEP01(2011)094
D.T. Son, P. Surowka, Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009). doi:10.1103/PhysRevLett.103.191601
Y. Jiang, X.G. Huang, J.F. Liao, Chiral vortical wave and induced flavor charge transport in a rotating quark–gluon plasma. Phys. Rev. D 92, 071501 (2015). doi:10.1103/PhysRevD.92.07150
L.P. Csernai, V.K. Magas, D.J. Wang, Flow vorticity in peripheral high energy heavy ion collisions. Phys. Rev. C 87, 034906 (2013). doi:10.1103/PhysRevC.87.034906
F. Becattini, G. Inghirami, V. Rolando et al., A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C 75, 406 (2015). doi:10.1140/epjc/s10052-015-3624-1
Y. Jiang, Z.W. Lin, J.F. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions (2016). arXiv:1602.06580
W.T. Deng, X.G. Huang, Vorticity in heavy-ion collisions. Phys. Rev. C 93, 064907 (2016). doi:10.1103/PhysRevC.93.06490
D.E. Kharzeev, D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys. Rev. Lett. 106, 062301 (2011). doi:10.1103/PhysRevLett.106.062301
F. Zhao, \(\Lambda (K_S^0)?Ch^\pm \) and \(\Lambda -p\) azimuthal correlations with respect to event plane and search for chiral magnetic and vortical effects. Nucl. Phys. A 931, 746–751 (2014). doi:10.1016/j.nuclphysa.2014.08.108
M. D’Elia, F. Negro, Chiral properties of strong interactions in a magnetic background. Phys. Rev. D 83, 114028 (2011). doi:10.1103/PhysRevD.83.114028
G.S. Bali, F. Bruckmann, G. Endrodi et al., Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD. JHEP 04, 130 (2013). doi:10.1007/JHEP04(2013)130
A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions. Eur. Phys. J. C 76, 107 (2016). doi:10.1140/epjc/s10052-015-3819-5
M.A. Andreichikov, V.D. Orlovsky, YuA Simonov, Asymptotic freedom in strong magnetic fields. Phys. Rev. Lett. 110, 162002 (2013). doi:10.1103/PhysRevLett.110.162002
M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky et al., Meson spectrum in strong magnetic fields. Phys. Rev. D 87, 094029 (2013). doi:10.1103/PhysRevD.87.094029
B.B. Brandt, G. Bali, G. Endrodi, et al., QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions. PoS, 265 (2016). arXiv:1510.03899 doi:10.1103/PhysRevD.87.094029
E.V. Luschevskaya, O.E. Solovjeva, O.A. Kochetkov et al., Magnetic polarizabilities of light mesons in \(SU(3)\) lattice gauge theory. Nucl. Phys. B 898, 627–643 (2015). doi:10.1016/j.nuclphysb.2015.07.023
H. Taya, Hadron masses in strong magnetic fields. Phys. Rev. D 92, 014038 (2015). doi:10.1103/PhysRevD.92.014038
N. Brambilla, P. Pietrulewicz, A. Vairo, Model-independent study of electric dipole transitions in quarkonium. Phys. Rev. D 85, 094005 (2012). doi:10.1103/PhysRevD.85.094005
A. Pineda, J. Segovia, Improved determination of heavy quarkonium magnetic dipole transitions in potential nonrelativistic QCD. Phys. Rev. D 87, 074024 (2013). doi:10.1103/PhysRevD.87.074024
E. Eichten, K. Gottfried, T. Kinoshita et al., Charmonium: the model. Phys. Rev. D 17, 3090 (1978). doi:10.1103/PhysRevD.17.3090
E. Eichten, K. Gottfried, T. Kinoshita et al., Charmonium: comparison with experiment. Phys. Rev. D 21, 203 (1980). doi:10.1103/PhysRevD.21.203
J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951). doi:10.1103/PhysRev.82.664
A.V. Sadofyev, Y. Yin, The charmonium dissociation in an “ganomalous wind”. JHEP 01, 052 (2016). doi:10.1007/JHEP01(2016)052
M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations. Nucl. Phys. B 147, 385–447 (1979). doi:10.1016/0550-3213(79)90022-1
M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics: applications. Nucl. Phys. B 147, 448–518 (1979). doi:10.1016/0550-3213(79)90023-3
L.J. Reinders, H. Rubinstein, S. Yazaki, Hadron properties from QCD sum rules. Phys. Rept. 127, 1 (1985). doi:10.1016/0370-1573(85)90065-1
M.A. Shifman, Snapshots of hadrons or the story of how the vacuum which are produced, live and die in the QCD vacuum. Prog. Theor. Phys. Suppl. 131, 1–71 (1998). doi:10.1143/PTPS.131.1
V.A. Novikov, M.A. Shifman, A.I. Vainshtein et al., Calculations in external fields in quantum chromodynamics. Technical review. Fortsch. Phys. 32, 585 (1984)
S. Ozaki, K. Itakura, Y. Kuramoto, Magnetically induced QCD kondo effect (2015). arXiv:1509.06966
K. Hattori, K. Itakura, S. Ozaki et al., QCD Kondo effect: quark matter with heavy-flavor impurities. Phys. Rev. D 92, 065003 (2015). doi:10.1103/PhysRevD.92.065003
S. Yasui, K. Suzuki, K. Itakura, Kondo phase diagram of quark matter (2016). arXiv:1604.07208
D.K. Hong, An effective field theory of QCD at high density. Phys. Lett. B 473, 118–125 (2000). doi:10.1016/S0370-2693(99)01472-0
D.K. Hong, Aspects of high density effective theory in QCD. Nucl. Phys. B 582, 451–476 (2000). doi:10.1016/S0550-3213(00)00330-8
T. Schefer, Hard loops, soft loops, and high density effective field theory. Nucl. Phys. A 728, 251–271 (2003). doi:10.1016/j.nuclphysa.2003.08.028
D.K. Hong, Y. Kim, S.-J. Sin, RG analysis of magnetic catalysis in dynamical symmetry breaking. Phys. Rev. D 54, 7879–7883 (1996). doi:10.1103/PhysRevD.54.7879
D.K. Hong, Magnetic catalysis in quantum electrodynamics. Phys. Rev. D 57, 3759–3762 (1998). doi:10.1103/PhysRevD.57.3759
G.D. Moore, D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71, 064904 (2005). doi:10.1103/PhysRevC.71.064904
L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320–3341 (1974). doi:10.1103/PhysRevD.9.3320
R. Baier, E. Pilon, On the axial anomaly at finite temperature in the Schwinger model. Z. Phys. C 52, 339–342 (1991). doi:10.1007/BF01560452
K. Fukushima, Magnetic-field induced screening effect and collective excitations. Phys. Rev. D 83, 11150 (2011). doi:10.1103/PhysRevD.83.111501
K. Hattori, K. Itakura, Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Ann. Phys. 330, 23–54 (2013). doi:10.1016/j.aop.2012.11.010
K. Hattori, K. Itakura, Vacuum birefringence in strong magnetic fields: (II)Complex refractive index from the lowest Landau level. Ann. Phys. 334, 58–82 (2013). doi:10.1016/j.aop.2013.03.016
A.V. Sadofyev, Y. Yin, Drag suppression in anomalous chiral media. Phys. Rev. D 93, 125026 (2016). doi:10.1103/PhysRevD.93.125026
S. Caron-Huot, G.D. Moore, Heavy quark diffusion in perturbative QCD at next-to-leading order. Phys. Rev. Lett. 100, 052301 (2008). doi:10.1103/PhysRevLett.100.052301
K. Rajagopal, A.V. Sadofyev, Chiral drag force. JHEP 10, 018 (2015). doi:10.1007/JHEP10(2015)018
M.A. Stephanov, H.-U. Yee, No-drag frame for anomalous chiral fluid. Phys. Rev. Lett. 116, 122302 (2016). doi:10.1103/PhysRevLett.116.122302
S.Y. Li, K.A. Mamo, H.-U. Yee, Jet quenching parameter of the quark–gluon plasma in a strong magnetic field: perturbative QCD and AdS/CFT correspondence. Phys. Rev. D 94, 085016 (2016). doi:10.1103/PhysRevD.94.085016
K. Hattori,S.Y. Li, D. Satow, et al., Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete Leading Order (2016). arXiv:1610.06839
K. Hattori, and D. Satow, Electrical conductivity of quark–gluon plasma in strong magnetic fields (2016). arXiv:1610.06818
Y.-S. Oh, S. Kim, S.H. Lee, Quarkonium hadron interactions in QCD. Phys. Rev. C 65, 067901 (2002). doi:10.1103/PhysRevC.65.067901
T. Song, S.H. Lee, Quarkonium–hadron interactions in perturbative QCD. Phys. Rev. D 72, 034002 (2005). doi:10.1103/PhysRevD.72.034002
Acknowledgements
K.H. thanks Kei Suzuki for useful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by Shanghai Natural Science Foundation (No. 14ZR1403000), 1000 Young Talents Program of China, and the National Natural Science Foundation of China (No. 11535012). K.H. is also supported by China Postdoctoral Science Foundation under Grant No. 2016M590312 and is grateful to support from RIKEN-BNL Research Center.
Appendix: Mixing strengths from the Bethe–Salpeter amplitudes
Appendix: Mixing strengths from the Bethe–Salpeter amplitudes
It would be instructive to see the computation of the coupling strength at the three-point vertex among two quarkonia and an external magnetic field by using the Bethe–Salpeter amplitudes obtained in the ladder approximation and the heavy-quark limit [240, 241]. This computation involves a typical technique for the perturbation theory in the presence of a magnetic field.
For the static charmonium carrying a momentum \(q = ( 2m - { \epsilon _0}, 0,0,0)\) with \({ \epsilon _0}\) being the binding energy, the Bethe–Salpeter amplitudes for \(\eta _{\rm c}\) and \(J/\psi \) are, respectively, given by
where we have the projection operators \(P_\pm = \frac{1}{2} ( 1 \pm \gamma ^0 ) \) and the ground-state wave function of the S-wave bound state \(\psi _{ \scriptscriptstyle 1S }({\varvec{p}}) \). The mass \(m_{ \scriptscriptstyle {c \bar{c}} }\) is those of \(\eta _{\rm c}\) and \(J/\psi \), which are degenerated in the heavy-quark limit. The number of the color is \(N_{\rm c}=3\).
We show a calculation of a coupling strength in the mixing between \(\eta _{\rm c}\) and the longitudinal \(J/\psi \) from triangle diagrams (Fig. 21). Interactions between quarks and external magnetic fields are taken into account by employing the Fock–Schwinger gauge. In this gauge, the quark propagators with one and two insertions of constant external fields are expressed as [216]
where \(Q_\mathrm{em}\) denotes an electromagnetic charge of a quark and the gamma matrix structures are given by
The coupling strength can be read off from the sum of the two diagrams \( i {\mathcal M} ^\mu = i {\mathcal M} _a^\mu + i {\mathcal M} _b^\mu \), where the each diagram is written down as
In the leading order of the heavy-quark expansion, the \( p^0\)-integral is easily performed, and we find
From the normalization of the wave function,
the amplitude is independent of the wave functions, and the sum of two triangle diagrams is obtained as
By contracting with the polarization vector for the longitudinal (transverse) vector state \(\epsilon ^\mu = (0,0,0,1)\) (\(\tilde{\epsilon }^\mu = (0, n_\perp , 0)\)), the amplitude vanishes for the transverse modes as
while the longitudinal mode has a nonvanishing amplitude
Therefore, the coupling strength in Eq. (25) is found to be
The coupling strength depends only on the electric charge and is given by \(g_{{_{\scriptscriptstyle {\mathrm {PV}}}}} = 8/3 \simeq 2.66 \) (\(g_{{_{\scriptscriptstyle {\mathrm {PV}}}}} = 4/3 \simeq 1.33 \)) for the transition between \(\eta _{\rm c}\) and \(J/\psi \) (\(\eta _b\) and \(\Upsilon \)). This is consistent with the value obtained by fitting the measured radiative decay width [see Eq. (33)], but is slightly overestimated. The radiative decay widths in \(J/\psi \rightarrow \eta _{\rm c} + \gamma \) and \(\Upsilon \rightarrow \eta _b + \gamma \) computed with the coupling strength (75) agree with the leading-order results by the potential Non-Relativistic QCD (pNRQCD) [208, 209]. The overestimate can be improved with the inclusion of the subleading terms [208, 209]. Extension to the open heavy flavors was carried out in Ref. [31].
Rights and permissions
About this article
Cite this article
Hattori, K., Huang, XG. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. NUCL SCI TECH 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41365-016-0178-3