[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Assessing temporal variation of primary and ecosystem production in two Mediterranean forests using a modified 3-PG model

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Forest ecosystem carbon uptake is heavily affected by increasing drought in the Mediterranean region.

Aims

The objectives of this study were to assess the capacity of a modified 3-PG model to capture temporal variation in gross primary productivity (GPP), and ecosystem net carbon uptake (NEE) in two Mediterranean forest types.

Methods

The model was upgraded from a monthly (3-PG) to a daily time step (3-PGday), and a soil water balance routine was included to better represent soil water availability. The model was evaluated against seasonal GPP and NEE dynamics from eddy covariance measurements.

Results

Simulated and measured soil water content values were congruent throughout the study period for both forest types. 3-PGday effectively described the following: GPP and NEE seasonal patterns; the transition of forest ecosystems from carbon sink to carbon source; however, the model overestimated diurnal ecosystem respiration values and failed to predict ecosystem respiration peaks.

Conclusions

The model served as a rather effective tool to represent seasonal variation in gross primary productivity, and ecosystem net carbon uptake under Mediterranean drought-prone conditions. However, its semi-empirical nature and the simplicity inherent in the original model formulation are obstacles preventing the model working well for short-term daily predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderegg WRL, Berry JA, Field CB (2012) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700. doi:10.1016/j.tplants.2012.09.006

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange form leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Envir 18:1157–1173. doi:10.1111/j.1365-3040.1995.tb00625.x

    Article  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Change Biol 10:1756–1766. doi:10.1111/j.1365-2486.2004.00816.x

    Article  Google Scholar 

  • Breuer L, Eckhardt K, Frede H (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293. doi:10.1016/S0304-3800(03)00274-6

    Article  Google Scholar 

  • Campbell GS (1985) Soil physics with BASIC—transport models for soil-plant systems. Developments in Soil Science 14. Elsevier, New York

    Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Wiley, New York, p 286

    Book  Google Scholar 

  • Chiesi M et al (2012) Use of BIOME-BGC to simulate water and carbon fluxes within Mediterranean macchia. Forest 5:38–43. doi:10.3832/ifor0605-009

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972

    Article  PubMed  CAS  Google Scholar 

  • Coops NC, Waring RH, Landsberg JJ (1998) Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecol Manag 104:113–127. doi:10.1016/S0378-1127(97)00248-X

    Article  Google Scholar 

  • Duursma RA, Kolari P, Perämäki M, Nikinmaa E, Hari P, Delzon S, Loustau D, Ilvesniemi H, Pumpanen J, Mäkelä A (2008) Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiol 28:265–276. doi:10.1093/treephys/28.2.265

    Article  PubMed  CAS  Google Scholar 

  • Feikema PM, Morris JD, Beverly CR, Collopy JJ, Baker TG, Lane PNJ (2010) Validation of plantation transpiration in south-eastern Australia estimated using the 3PG + forest growth model. Forest Ecol Manag 260:663–678. doi:10.1016/j.foreco.2010.05.022

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33, L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Hoff C, Rambal S, Joffre R (2002) Simulating carbon and water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model. Forest Ecol Manag 164:121–136. doi:10.1016/S0378-1127(01)00605-3

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22

    Google Scholar 

  • Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940. doi:10.1093/treephys/27.7.929

    Article  PubMed  CAS  Google Scholar 

  • Keith H, Leuning R, Jacobsen KL, Cleugh HA, van Gorsel E, Raison RJ, Medlyn BE, Winters A, Keitel C (2009) Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest. Agr Forest Meteorol 149:535–558. doi:10.1016/j.agrformet.2008.10.002

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecol Manag 95:209–228. doi:10.1016/S0378-1127(97)00026-1

    Article  Google Scholar 

  • Law BE, Waring RH, Anthoni PM, Aber JD (2000) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob Change Biol 6:155–168. doi:10.1046/j.1365-2486.2000.00291.x

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709

    Article  Google Scholar 

  • Makela A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala T, Hari P (2008) An empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob Change Biol 14:92–108. doi:10.1111/j.1365-2486.2007.01463.x

    Google Scholar 

  • McCarthy HR, Luo YQ, Wullschleger SD (2012) Integrating empirical-modeling approaches to improve understanding of terrestrial ecology processes. New Phytol 195:523–525. doi:10.1111/j.1469-8137.2012.04222.x

    Article  PubMed  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Phil Trans R Soc B 281:277–294

    Article  Google Scholar 

  • Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. doi:10.1111/nph.12288

    Google Scholar 

  • Nolè A, Law BE, Magnani F, Matteucci G, Ferrara A, Ripullone F, Borghetti M (2009) Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Can J Forest Res 39:1647–1661. doi:10.1139/X09-077

    Article  Google Scholar 

  • Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems? The effect of drought. Biogeosciences 4:791–802

    Article  CAS  Google Scholar 

  • Piedallu C, Gégout J-C, Perez V, Lebourgeois F, Field R (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecol Biogeogr 22:470–482. doi:10.1111/geb.12012

    Article  Google Scholar 

  • Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cy 17:1104–1116. doi:10.1029/2003GB002035

    Article  Google Scholar 

  • Sands PJ, Landsberg JJ (2002) Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecol Manag 163:273–292. doi:10.1016/S0378-1127(01)00586-2

    Article  Google Scholar 

  • Shinozawa S, Campbell GS (1991) On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci 152:427–431

    Article  Google Scholar 

  • Tedeschi V, Rey A, Manca G, Jarvis PG, Valentini R, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Change Biol 12:110–121. doi:10.1111/j.1365-2486.2005.01081.x

    Article  Google Scholar 

  • Tickle PK, Coops NC, Hafner SD, The Bago Science Team (2001) Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPATIAL. Forest Ecol Manag 152:275–291. doi:10.1016/S0378-1127(00)00609-5

    Article  Google Scholar 

  • Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F (2012) Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. Forest 5:235–246. doi:10.3832/ifor0634-005

    Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3:292–297

    Article  Google Scholar 

  • Xenakis G, Ray D, Mencuccini M (2008) Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecol Model 219:1–16. doi:10.1016/j.ecolmodel.2008.07.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by a grant from the MIUR-FISR CarboItaly Project and, in part, by the MIUR-PRIN project-N. 20085FL4E4_002. Angelo Nolè acknowledges a STMS COST-fellowship (FP0603) and thanks Anniki Makela (University of Helsinki) for useful discussion and advices. We thank two anonymous referees and the associate editor, Barry Gardiner, for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Borghetti.

Additional information

Handling Editor: Barry Alan Gardiner

Contribution of the co-authors A. Nolè: designing, assembling and running the model, coordinating the experimental work, writing the paper; A. Collalti: providing eddy flux data, contributing to data analysis; F. Magnani: contributing to model structure; A. Ferrara: contributing to data analysis; G. Mancino: contributing to data analysis; P. Duce, S. Marras, C. Sirca, D. Spano, providing eddy flux data; M. Borghetti, coordinating the research project, contributing to model structure, writing the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolè, A., Collalti, A., Magnani, F. et al. Assessing temporal variation of primary and ecosystem production in two Mediterranean forests using a modified 3-PG model. Annals of Forest Science 70, 729–741 (2013). https://doi.org/10.1007/s13595-013-0315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-013-0315-7

Keywords