[go: up one dir, main page]

Skip to main content
Log in

A weighted bio-signal denoising approach using empirical mode decomposition

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to show the effectiveness of a physiological signal denoising approach called EMDDWT-CLS.

Methods

This paper presents a new approach for signal denoising based on empirical mode decomposition (EMD), discrete wavelet transform (DWT) thresholding, and constrained least squares (CLS). In particular, the noisy signal is decomposed by empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) plus a residue. Then, each IMF is denoised by using the discrete wavelet transform (DWT) thresholding technique. Finally, the denoised signal is recovered by performing a weighted summation of the denoised IMFs except the residue. The weights are determined by estimating a constrained least squares coefficients; where, the sum of the coefficients is constrained to unity. We used human ECG and EEG signals, and also two EEG signals from left and right cortex of two healthy adult rats.

Results

The 36 experimental results show that the proposed EMD-DWT-CLS provides higher signal-to-noise ratio (SNR) and lower mean of squared errors (MSE) than the classical EMD-DWT model.

Conclusions

Based on comparison with classical EMDDWT model used in the literature, the proposed approach was found to be effective in human and animal physiological signals denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jose J, Prahladan A, Nair MS. Speckle reduction and contrast enhancement of ultrasound images using anisotropic diffusion with Jensen Shannon divergence operator. Biomed Eng Lett. 2013; 3(2):87–94.

    Article  Google Scholar 

  2. Biradar N, Dewal ML, Rohit MK. A novel hybrid homomorphic fuzzy filter for speckle noise reduction. Biomed Eng Lett. 2014; 4(2):176–85.

    Article  Google Scholar 

  3. Park J, Kang JB, Chang JH, Yoo Y. Speckle reduction techniques in medical ultrasound imaging. Biomed Eng Lett. 2014; 4(1):32–40.

    Article  Google Scholar 

  4. Osadebey M, Bouguila N, Arnold D, the ADNI. Optimal selection of regularization parameter in total variation method for reducing noise in magnetic resonance images of the brain. Biomed Eng Lett. 2014; 4(1):80–92.

    Article  Google Scholar 

  5. Biradar N, Dewal ML, Rohit MK. Comparative analysis of despeckling filters for continuous wave Doppler images. Biomed Eng Lett. 2015; 5(1):33–44.

    Article  Google Scholar 

  6. Lahmiri D, Boukadoum M. Biomedical image denoising using variational mode decomposition. Conf Proc IEEE T Biomed Circuits Syst. 2014; 1:340–3.

    Google Scholar 

  7. Lahmiri S. Image denoising in bidimensional empirical mode decomposition domain: The role of Student probability distribution function. IET Healthc Tech Lett. Submitted.

  8. Ahirwal MK, Kumar A, Singh GK. Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach. Biomed Eng Lett. 2012; 2(3):186–97.

    Article  Google Scholar 

  9. Ge S, Han M, Hong X. A Fully automatic ocular artifact removal from EEG based on fourth-order tensor method. Biomed Eng Lett. 2014; 4(1):55–63.

    Article  Google Scholar 

  10. Lahmiri S. A Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. IET Healthc Tech Lett. 2014; 1(3):104–9.

    Article  Google Scholar 

  11. McSharry PE, Clifford GD, Terassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE T Biomed Eng. 2003; 50(3):289–94.

    Article  Google Scholar 

  12. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Royal Soc London. 1998; doi:10.1098/rspa.1998.0193.

    Google Scholar 

  13. Daubechies I. Ten lectures on wavelets. SIAM. 1998; doi:10.1137/1.9781611970104.

    Google Scholar 

  14. Alfaouri M, Daqrouq K. ECG signal denoising by wavelet transform thresholding. Am J Appl Sci. 2008; 5(3):276–81.

    Article  Google Scholar 

  15. Poornachandra S. Wavelet-based denoising using subband dependent threshold for ECG signals. Digit Signal Process. 2008; 18(1):49–55.

    Article  Google Scholar 

  16. Stein CM. Estimation of the mean of a multivariate normal distribution. Ann Stat. 1981; 9(6):1135–51.

    Article  Google Scholar 

  17. Donoho DL, Johnstone IM. Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc. 1995; 90(432):1200–24.

    Article  MathSciNet  MATH  Google Scholar 

  18. Luisier F, Blu T, Unser M. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE T Image Process. 2007, 16(3):593–606.

    Article  MathSciNet  Google Scholar 

  19. De Pierro AR, Wei M. Some new properties of the equality constrained and weighted least squares problem. Linear Algebra Appl. 2000; 320(1–3):145–65.

    Article  MathSciNet  Google Scholar 

  20. Judge GG, Takayama T. Inequality restrictions in regression analysis. J Am Stat Assoc. 1966; 61(313):166–81.

    Article  MathSciNet  MATH  Google Scholar 

  21. Liew CK. Inequality constrained least-squares estimation. J Am Stat Assoc. 1976; 71(355):746–51.

    Article  MathSciNet  Google Scholar 

  22. Gill PE, Murray W, Wright MH. Practical Optimization. London Academic Press; 1981.

    MATH  Google Scholar 

  23. Swartz center for computational neuroscience. http://sccn.ucsd.edu. Accessed 15 Sept 2014.

  24. Breitung J. The local power of some unit root tests for panel data. In: Baltagi BH, editor. Advances in econometrics, vol. 15: Nonstationary panels, panel cointegration, and dynamic panels. Amsterdam JAI; 2000. pp. 161–78. Panel Cointegration, and Dynamic Panels. Amsterdam: JAI Press, 2000; 15: 161–78.

    Book  Google Scholar 

  25. Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika, 1988; 75(2):335–46.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc. 1979; 74(366):427–31.

    Article  MathSciNet  Google Scholar 

  27. Luisier F, Blu T, Unser M. Image denoising in mixed poisson-Gaussian noise. IEEE T Image Process. 2011, 20(3):696–708.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Lahmiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahmiri, S., Boukadoum, M. A weighted bio-signal denoising approach using empirical mode decomposition. Biomed. Eng. Lett. 5, 131–139 (2015). https://doi.org/10.1007/s13534-015-0182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0182-2

Keywords

Navigation