[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Land surface temperature (LST) is a required input data for modeling in climatological, hydrological, agricultural, and change detection studies. In the current study, remotely sensed thermal infrared data were applied to assess LST in south Karkheh sub-basin, Iran. This research deals with the extraction of LST and land surface emissivity (LSE) and the relationship between vegetation abundance using Landsat 5 TM and Landsat 7 ETM+ for October 1998 and 2002 over the studied area. The landuse/land cover (LULC) map was derived by using maximum likelihood classifier. The variety of LSE was investigated and extracted on the basis of NDVI threshold method, as well as the Plank equation was used to derive LST over the study region. The relationship between LST and different LULC is determined by zonal GIS and regression analysis. The results illustrate that the emissivity lies in the range of 0.860–0.992 and 0.855–0.992 in 1998 and 2002, respectively. The maximum value of LSE equal to ∼0.99 was observed over the dense vegetation, while the minimum LSE value equal to ∼0.880 was found over the sand dune. LST and NDVI analysis exhibits a strong inverse correlation except over water bodies. The strongest coefficient correlation was found over wetland (−0.76 and R2 = 0.78).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  • Amiri R, Weng Q, Alimohammadi A, Alavipanah SK (2009) Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens Environ 113(12):2606–2617. doi:10.1016/j.rse.2009.07.021

    Article  Google Scholar 

  • Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4):313–329

    Article  Google Scholar 

  • Becker F, Li ZL (1990) Temperature-independent spectral indices in TIR bands. Remote Sens Environ 32(1):17–33

    Article  Google Scholar 

  • Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: a moderate resolution model for LOWTRAN 7, technical report GL-TR-89–0122. Geophysics, Lab, Bedford, MA

    Google Scholar 

  • Biro K, Pradhan B, Buchroithner MF, Makeschin F (2013) An assessment of land use/land-cover change impacts on soil properties in the northern part of Gadarif region, Sudan. Land Degrad Dev 24(1):90–102. doi:10.1002/ldr.1116

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relationship between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252

    Article  Google Scholar 

  • Caselles V, Coll C, Valor E, Rubio E (1996) Mapping land surface emissivity using AVHRR data: application to La Mancha, Spain. Remote Sens Rev 12(3–4):311–333

    Google Scholar 

  • Dash P, Gottsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice–current trends. Int J Remote Sens 23:2563–2594

    Article  Google Scholar 

  • Ghobadi Y, Pradhan, B, Kabiri K, Pirasteh S, Shafri HZM, Sayyad GH (2012) Use of Multi-Temporal Remote Sensing Data and GIS for Wetland Change Monitoring and Degradation. IEEE Colloquium on Humanities, Science and Engineering. 103-108, doi:10.1109/CHUSER.2012.6504290

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126

    Article  Google Scholar 

  • Irish RR (2000) Landsat 7 Science Data User’s Handbook. National Aeronautics and Space Administration, Report 430-15

  • Jebur MN, Shafri HZM, Pradhan B, Tehrany MS (2013) Per-pixel and object-oriented classification methods for mapping urban land cover extraction using SPOT 5 imagery. Geocarto Int (Article online first available). http://dx.doi.org/10.1080/10106049.2013.848944

  • Jimenez-Munoz JC, Sobrino JA (2003) A generalized single channel method for retrieving land surface temperature from remote sensing data. J Geophys Res 108(22). doi: 10.1029/ 2003JD003480

  • Khodaei K, Nassery HR (2013) Groundwater exploration using remote sensing and geographic information systems in a semiarid area (Southwest of Urmieh, Northwest of Iran). Arab J Geosci 6:1229–1240. doi:10.1007/s12517-011-0414-4

    Article  Google Scholar 

  • Liu Y, Hiyama T, Yamaguchi Y (2006) Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens Environ 105(2):115–128

    Article  Google Scholar 

  • Mallick J, Singh CK, Shashtri S, Rahman A, Mukherjee S (2012) Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int J Appl Earth Obstet 19:348–358

    Article  Google Scholar 

  • Markham BL, Barker JL (1985) Spectral characterization of the Landsat Thematic Mapper sensors. Int J Remote Sens 6(5):697–716

    Article  Google Scholar 

  • Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Agric For Meteorol 77(3):153–166

    Article  Google Scholar 

  • Owen TW, Carlson TN, Gillies RR (1998) An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens 19(9):1663–1681

    Article  Google Scholar 

  • Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3:319–326. doi:10.1007/s12517-009-0089-2

    Article  Google Scholar 

  • Qin Z, Karnieli A (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22(18):3719–3746

    Article  Google Scholar 

  • Rodriguez-Galiano V, Pardo-Iguzquiza E, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M (2011) Downscaling Landsat 7 ETM + thermal imagery using land surface temperature and NDVI images. Int J Appl Earth Obstet 18:515–527. doi:10.1016/j.jag.2011.10.002

    Article  Google Scholar 

  • Snyder WC, Wan Z, Zhang Y, Feng YZ (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19(14):2753–2774

    Article  Google Scholar 

  • Sobrino JA, Caselles V, Becker F (1990) Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS J Photogramm Remote Sens 44(6):343–354

    Article  Google Scholar 

  • Sobrino JA, Kharraz JE, Li ZL (2003) Surface temperature and water vapor retrieval from MODIS data. Int J Remote Sens 24(24):5161–5182

    Article  Google Scholar 

  • Sobrino JA, Jiménez-Muñoz C, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440

    Article  Google Scholar 

  • Sobrino JA, Oltra-Carrió R, Jiménez-Muñoz JC, Julien Y, Sòria G, Franch B, Mattar C (2012) Emissivity mapping over urban areas using a classification-based approach: application to the dual-use European Security IR Experiment (DESIREX). Int J Appl Earth Obstet 18:141–147

    Article  Google Scholar 

  • Srivastava PK, Majumdar TJ, Bhattacharya Amit K (2009) Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM + thermal infrared data. Adv Space Res 43:1563–1574

    Article  Google Scholar 

  • Srivastava PK, Majumdar TJ, Bhattacharya AK (2010) Study of land surface temperature and spectral emissivity using multi-sensor satellite data. J Earth Syst Sci 119:67–74

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2012) A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using Spot 5 imagery. Geocarto International, (Article online first available). http://dx.doi.org/10.1080/10106049.2013.768300

  • Tehrany MS, Pradhan B, Jebur MN (2013a) Spatial prediction of flood susceptible areas using rule-based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013b) Remote sensing data reveals eco-environmental changes in urban areas of Klang Valley, Malaysia: contribution from object based analysis. J Indian Soc Remote Sens 41(4):981–991. doi:10.1007/s12524-013-0289-9

    Article  Google Scholar 

  • Valor E, Caselles V (1996) Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sens Environ 57(3):167–184

    Article  Google Scholar 

  • Vijith H, Suma M, Rekha VB, Shiju C, Rejith PG (2012) An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS. Arab J Geosci 5(4):797–805

    Article  Google Scholar 

  • Wakode HB, Baier K, Jha R, Azzam R (2013) Analysis of urban growth using Landsat TM/ETM data and GIS—a case study of Hyderabad, India. Arab J Geosci, 1-13. DOI 10.1007/s12517-013-0843-3

  • Weng Q (2009) Thermal infrared remote sensing for urban climate and environment studies: methods, application, and trends. ISPRS J Photogramm 64:335–344

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Tarabees E (2011) Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arab J Geosci 4(3–4):463–473

    Article  Google Scholar 

  • Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM + data. Int J Remote Sens 28(15):3205–3226

    Article  Google Scholar 

  • Yusuf YA, Pradhan B, Idrees MO (2013) Spatiotemporal assessment of urban heat island effects in Kuala Lumpur Metropolitan City using Landsat images. J Indian Soc Remote Sens, (Accepted: in press). http://dx.doi.org/10.1007/s12524-013-0342-8

Download references

Acknowledgments

Thanks to two anonymous reviewers for their valuable comments which helped us to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghobadi, Y., Pradhan, B., Shafri, H.Z.M. et al. Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arab J Geosci 8, 525–537 (2015). https://doi.org/10.1007/s12517-013-1244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1244-3

Keywords

Navigation