[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots

  • Research Article
  • Published:
Nano Research Aims and scope

An Erratum to this article was published on 29 October 2020

This article has been updated

Abstract

Surface-enhanced Raman scattering (SERS) enables rapid detection of single molecules with high specificity. However, quantitative and sensitive SERS analysis has been a challenge due to the lack of reliable SERS-active materials. In this study, we developed a quantitative SERS-based immunoassay using enzyme-guided Ag growth on Raman labeling compound (RLC)-immobilized gold nanoparticle (Au NP)-assembled silica NPs (SiO2@Au-RLC@Ag). The enzyme amplified Ag+ reduction as well as Ag growth on the RLC-immobilized Au NP-assembled silica NPs (SiO2@Au-RLC), which resulted in a significant increase in SERS signal. In the presence of target antigens such as immunoglobulinG (IgG) or prostate-specific antigen (PSA), Ab1-Antigen-Ab2 immune complex with alkaline phosphatase triggered an enzyme- catalyzed reaction to convert 2-phospho-L-ascorbic acid (2-phospho-L-AA) to ascorbic acid (AA). As produced AA reduced Ag+ to Ag, forming an Ag hot spot on the surface of SiO2@Au-RLC, which enhanced the SERS signal of SiO2@Au-RLC@Ag in a solution with a target antigen concentration. The plasmonic immunoassay for IgG detection showed a high linearity of SERS intensity in the range of 0.6 to 9.0 ng/mL with a detection limit (LOD) of 0.09 ng/mL, while an LOD of 0.006 ng/mL was obtained for PSA. The results indicate that the sensitivity of our novel SERS-based immunoassay is higher than that of conventional enzyme-based colorimetric immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 October 2020

    One author name and corresponding affiliation of the original version of this article were unfortunately mislabeled.

  • 29 October 2020

    An Erratum to this paper has been published: https://doi.org/10.1007/s12274-020-3115-z

References

  1. Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S. K.; Krasnoslobodtsev, A. V. Surface-enhanced Raman scattering-based immunoassay technologies for detection of disease biomarkers. Biosensors 2017, 7, 7.

    Google Scholar 

  2. Klee, G. G.; Post, G. Effect of counting errors on immunoassay precision. Clin. Chem. 1989, 35, 1362–1366.

    CAS  Google Scholar 

  3. Hicks, J. M. Fluorescence immunoassay. Hum. Pathol. 1984, 15, 112–116.

    CAS  Google Scholar 

  4. Brown, C. R.; Higgins, K. W.; Frazer, K.; Schoelz, L. K.; Dyminski, J. W.; Marinkovich, V. A.; Miller, S. P.; Burd, J. F. Simultaneous determination of total IgE and allergen-specific IgE in serum by the MAST chemiluminescent assay system. Clin. Chem. 1985, 31, 1500–1505.

    CAS  Google Scholar 

  5. Zhang, J. J.; Liu, Y.; Hu, L. H.; Jiang, L. P.; Zhu, J. J. “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode. Chem. Commun. 2011, 47, 6551–6553.

    CAS  Google Scholar 

  6. Butler, J. E. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 2000, 22, 4–23.

    CAS  Google Scholar 

  7. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    CAS  Google Scholar 

  8. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

    CAS  Google Scholar 

  9. Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G F.; Narayanan, R. SERS as a bioassay platform: Fundamentals, design, and applications. Chem. Soc. Rev. 2008, 37, 1001–1011.

    CAS  Google Scholar 

  10. Lee, M.; Lee, K.; Kim, K. H.; Oh, K. W.; Choo, J. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip. 2012, 12, 3720–3727.

    CAS  Google Scholar 

  11. Chen, L. X.; Choo, J. C. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 2008, 29, 1815–1828.

    CAS  Google Scholar 

  12. Kanipe, K. N.; Chidester, P. P. F.; Stucky, G. D.; Moskovits, M. Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity. ACS Nano 2016, 70, 7566–7571.

    Google Scholar 

  13. Garcia-Rico, E.; Alvarez-Puebla, R. A.; Guerrini, L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: From fundamental studies to real-life applications. Chem. Soc. Rev. 2018, 47, 4909–4923.

    CAS  Google Scholar 

  14. Lu, Y.; Liu, G. L.; Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 2005, 5, 5–9.

    CAS  Google Scholar 

  15. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

    CAS  Google Scholar 

  16. Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

    Google Scholar 

  17. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338 A–346 A.

    CAS  Google Scholar 

  18. Jun, B. H.; Kim, G.; Jeong, S.; Noh, M. S.; Pham, X. H.; Kang, H.; Cho, M. H.; Kim, J. H.; Lee, Y. S.; Jeong, D. H. Silica core-based surface-enhanced Raman scattering (SERS) tag: Advances in multifunctional sers nanoprobes for bioimaging and targeting of biomarkers. Bull. Korean Chem. Soc. 2015, 36, 963–978.

    CAS  Google Scholar 

  19. Liu, G. L.; Lee, L. P. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 2005, 87, 074101.

    Google Scholar 

  20. Yang, J. K.; Kang, H.; Lee, H.; Jo, A.; Jeong, S.; Jeon, S. J.; Kim, H. I.; Lee, H. Y.; Jeong, D. H.; Kim, J. H. et al. Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for labelfree detection of pesticides. ACS Appl. Mater. Interfaces 2014, 6, 12541–12549.

    CAS  Google Scholar 

  21. Kang, H.; Yang, J. K.; Noh, M. S.; Jo, A.; Jeong, S.; Lee, M.; Lee, S.; Chang, H.; Lee, H.; Jeon, S. J. et al. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J. Mater. Chem. B 2014, 2, 4415–4421.

    CAS  Google Scholar 

  22. Schlücker, S.; Salehi, M.; Bergner, G.; Schütz, M.; Ströbel, P.; Marx, A.; Petersen, I.; Dietzek, B.; Popp, J. Immuno-surface-enhanced coherent anti-stokes Raman scattering microscopy: Immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy. Anal. Chem. 2011, 83, 7081–7085.

    Google Scholar 

  23. Li, M.; Cushing, S. K.; Zhang, J. M.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D. L.; Liu, Y. X.; Wu, N. Q. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013, 7, 4967–4976.

    CAS  Google Scholar 

  24. Chon, H.; Lee, S.; Son, S. W.; Oh, C. H.; Choo, J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal. Chem. 2009, 81, 3029–3034.

    CAS  Google Scholar 

  25. Rodríguez-Lorenzo, L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.

    Google Scholar 

  26. Büchner, T.; Drescher, D.; Traub, H.; Schrade, P.; Bachmann, S.; Jakubowski, N.; Kneipp, J. Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping. Anal. Bioanal. Chem. 2014, 406, 7003–7014.

    Google Scholar 

  27. Driskell, J. D.; Lipert, R. J.; Porter, M. D. Labeled gold nanoparticles immobilized at smooth metallic substrates: Systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. J. Phys. Chem. B 2006, 110, 17444–17451.

    CAS  Google Scholar 

  28. Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170.

    CAS  Google Scholar 

  29. Lee, S.; Kim, S.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Choi, H. Y.; Ha, S.; Kang, K.; Oh, C. H. Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal. Chem. 2007, 79, 916–922.

    CAS  Google Scholar 

  30. Karn-orachai, K.; Sakamoto, K.; Laocharoensuk, R.; Bamrungsap, S.; Dharakul, T.; Miki, K. SERS-based immunoassay on 2D-arrays of Au@Ag core-shell nanoparticles: Influence of the sizes of the SERS probe and sandwich immunocomplex on the sensitivity. RSC Adv. 2017, 7, 14099–14106.

    CAS  Google Scholar 

  31. De la Rica, R.; Stevens, M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protocols 2013, 8, 1759–1764.

    Google Scholar 

  32. Liu, D. B.; Yang, J.; Wang, H. F.; Wang, Z. L.; Huang, X. L.; Wang, Z. T.; Niu, G.; Hight Walker, A. R.; Chen, X. Y. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal. Chem. 2014, 86, 5800–5806.

    CAS  Google Scholar 

  33. Kim, H. M.; Jeong, S.; Hahm, E.; Kim, J.; Cha, M. G.; Kim, K. M.; Kang, H.; Kyeong, S.; Pham, X. H.; Lee, Y. S. et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J. Ind. Eng. Chem. 2016, 33, 22–27.

    CAS  Google Scholar 

  34. Hahm, E.; Cha, M. G.; Kang, E. J.; Pham, X. H.; Lee, S. H.; Kim, H. M.; Kim, D. E.; Lee, Y. S.; Jeong, D. H.; Jun, B. H. Multilayer Ag-embedded silica nanostructure as a surface-enhanced Raman scattering-based chemical sensor with dual-function internal standards. ACS Appl. Mater. Interfaces 2018, 10, 40748–40755.

    CAS  Google Scholar 

  35. Yang, J. K.; Hwang, I. J.; Cha, M. G.; Kim, H. I.; Yim, D. B.; Jeong, D. H.; Lee, Y. S.; Kim, J. H. Reaction kinetics-mediated control over silver nanogap shells as surface-enhanced Raman scattering nanoprobes for detection of Alzheimer’s disease biomarkers. Small 2019, 15, 1900613.

    Google Scholar 

  36. Kang, H.; Jeong, S.; Jo, A.; Chang, H.; Yang, J. K.; Jeong, C.; Kyeong, S.; Lee, Y. W.; Samanta, A.; Maiti, K. K. et al. Ultrasensitive NIR-SERRS probes with multiplexed ratiometric quantification for in vivo antibody leads validation. Adv. Healthc. Mater. 2018, 7, 1700870.

    Google Scholar 

  37. Chang, H.; Kang, H.; Ko, E.; Jun, B. H.; Lee, H. Y.; Lee, Y. S.; Jeong, D. H. PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method. ACS Sens. 2016, 1, 645–649.

    CAS  Google Scholar 

  38. Pham, X. H.; Lee, M.; Shim, S.; Jeong, S.; Kim, H. M.; Hahm, E.; Lee, S. H.; Lee, Y. S.; Jeong, D. H.; Jun, B. H. Highly sensitive and reliable SERS probes based on nanogap control of a Au-Ag alloy on silica nanoparticles. RSC Adv. 2017, 7, 7015–7021.

    CAS  Google Scholar 

  39. Martin, M. N.; Li, D. W.; Dass, A.; Eah, S. K. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d< 2 nm). Nanoscale 2012, 4, 4091–4094.

    CAS  Google Scholar 

  40. Bastús, N. G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 2011, 27, 11098–11105.

    Google Scholar 

  41. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core-shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29, 15076–15082.

    CAS  Google Scholar 

  42. Martin, M. N.; Basham, J. I.; Chando, P.; Eah, S. K. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 2010, 26, 7410–7417.

    CAS  Google Scholar 

  43. Seo, E.; Ko, S. J.; Min, S. H.; Kim, J. Y.; Kim, B. S. Plasmonic transition via interparticle coupling of Au@Ag core-shell nanostructures sheathed in double hydrophilic block copolymer for highperformance polymer solar cell. Chem. Mater. 2015, 27, 4789–4798.

    CAS  Google Scholar 

  44. Michota, A.; Bukowska, J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 2003, 34, 21–25.

    CAS  Google Scholar 

  45. Fang, Y. R.; Li, Y. Z.; Xu, H. X.; Sun, M. T. Ascertaining p,p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 2010, 26, 7737–7746.

    CAS  Google Scholar 

  46. Pham, X. H.; Hahm, E.; Kang, E.; Son, B. S.; Ha, Y.; Kim, H. M.; Jeong, D. H.; Jun, B. H. Control of silver coating on Raman label incorporated gold nanoparticles assembled silica nanoparticles. Int. J. Mol. Sci. 2019, 20, 1258.

    CAS  Google Scholar 

  47. Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, Y. S.; Jeong, D. H.; Jun, B. H. Enzyme-catalyzed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay. Sci. Rep. 2018, 8, 6290.

    Google Scholar 

  48. Cook, E. D.; Nelson, A. C. Prostate cancer screening. Curr. Oncol. Rep. 2011, 13, 57–62.

    CAS  Google Scholar 

  49. Bok, R. A.; Small, E. J. Bloodborne biomolecular markers in prostate cancer development and progression. Nat. Rev. Cancer 2002, 2, 918–926.

    CAS  Google Scholar 

  50. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886.

    CAS  Google Scholar 

  51. Thaxton, C. S.; Elghanian, R.; Thomas, A. D.; Stoeva, S. I.; Lee, J. S.; Smith, N. D.; Schaeffer, A. J.; Klocker, H.; Horninger, W.; Bartsch, G et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA 2009, 106, 18437–18442.

    CAS  Google Scholar 

  52. Hahn, J.; Kim, E.; You, Y.; Choi, Y. J. Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker. Analyst 2019, 144, 4439–4446.

    CAS  Google Scholar 

  53. Liu, Y. S.; Zhang, Z. Y.; Yu, J.; Xie, J.; Li, C. M. A concentration-dependent multicolor conversion strategy for ultrasensitive colorimetric immunoassay with the naked eye. Anal. Chim. Acta 2017, 963, 129–135.

    CAS  Google Scholar 

  54. Suaifan, G. A. R. Y.; Esseghaier, C.; Ng, A.; Zourob, M. Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based biosensors. Analyst 2013, 138, 3735–3739.

    CAS  Google Scholar 

  55. Fu, G. L.; Sanjay, S. T.; Li, X. J. Cost-effective and sensitive colorimetric immunosensing using an iron oxide-to-prussian blue nanoparticle conversion strategy. Analyst 2016, 141, 3883–3889.

    CAS  Google Scholar 

  56. Gao, Z. Q.; Xu, M. D.; Hou, L.; Chen, G. N.; Tang, D. P. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal. Chem. 2013, 85, 6945–6952.

    CAS  Google Scholar 

  57. Lai, W. Q.; Tang, D. P.; Zhuang, J. Y.; Chen, G. N.; Yang, H. H. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal. Chem. 2014, 86, 5061–5068.

    CAS  Google Scholar 

  58. Gao, Z. Q.; Hou, L.; Xu, M. D.; Tang, D. P. Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci. Rep. 2014, 4, 3966.

    Google Scholar 

  59. Cao, C.; Li, X. X.; Lee, J.; Sim, S. J. Homogenous growth of gold nanocrystals for quantification of psa protein biomarker. Biosens. Bioelectron. 2009, 24, 1292–1297.

    CAS  Google Scholar 

  60. Mannello, F.; Gazzanelli, G. Prostate-specific antigen (PSA/hK3): A further player in the field of breast cancer diagnostics? Breast Cancer Res. 2001, 3, 238.

    CAS  Google Scholar 

  61. Mashkoor, F. C.; Al-Asadi, J. N.; Al-Naama, L. M. Serum level of prostate-specific antigen (PSA) in women with breast cancer. Cancer Epidemiol. 2013, 37, 613–618.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the KU Research Professor Program of Konkuk University & funded by the Korean Health Technology R&D Project, Ministry of Health & Welfare (No. HI17C1264), Ministry of Science and ICT (No. NRF-2019R1G1A1006488).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hak Soo Choi or Bong-Hyun Jun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, XH., Hahm, E., Kim, T.H. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 13, 3338–3346 (2020). https://doi.org/10.1007/s12274-020-3014-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3014-3

Keywords