Abstract
In this review article, the latest applications of machine learning (ML) in the additive manufacturing (AM) field are reviewed. These applications, such as parameter optimization and anomaly detection, are classified into different types of ML tasks, including regression, classification, and clustering. The performance of various ML algorithms in these types of AM tasks are compared and evaluated. Finally, several future research directions are suggested.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- Abbreviation :
-
Meaning
- 3D:
-
Three dimensional
- AE:
-
Acoustic emission
- AI:
-
Artificial intelligence
- AM:
-
Additive manufacturing
- BJ:
-
Binder jetting
- BoW:
-
Bag of words
- BP:
-
Backpropagation
- CNN:
-
Convolutional neural network
- CT:
-
Computed tomography
- CV:
-
Cross-validation
- DA:
-
Discriminant analysis
- DBN:
-
Deep belief network
- DED:
-
Direct energy deposition
- DT:
-
Decision tree
- FFF:
-
Fused filament fabrication
- FN:
-
False negative
- FP:
-
False positive
- GP:
-
Gaussian process
- KNN:
-
k-Nearest neighbors
- LOOCV:
-
Leave-one-out cross-validation
- L-PBF:
-
Laser powder bed fusion
- ME:
-
Material extrusion
- MJ:
-
Material jetting
- ML:
-
Machine learning
- NN:
-
Neural network
- PBF:
-
Powder bed fusion
- PCA:
-
Principal component analysis
- PSP:
-
Process-structure–property
- RF:
-
Random forest
- RMSE:
-
Root mean square error
- RT:
-
Regression tree
- SL:
-
Sheet lamination
- SOM:
-
Self-organizing map
- SVM:
-
Support vector machine
- TN:
-
True negative
- TP:
-
True positive
- UQ:
-
Uncertainty quantification
References
ASTM F42. Resource document. https://www.astm.org/COMMIT/SUBCOMMIT/F42.htm. Accessed 28 February 2020
I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. (New York: Springer, 2015), pp. 1–18.
E. Alpaydin, Introduction to Machine Learning, 3rd ed. (London: The MIT Press, 2009), p. 3.
W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).
W.J. Sames, F. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).
Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, J. Mater. Eng. Perform. 27, 1 (2018).
M.M. Francois, A. Sun, W.E. King, N.J. Herson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T.S. Haut, J. Bakosi, J.W. Gibbs, V. Livescu, W. Vander, A. Scott, A.J. Clarke, M.W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A.T. Anderson, J.-L. Fattebert, R.M. Ferencz, N.E. Hodge, S.A. Khairallah, and O. Walton, Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21, 198 (2017).
M. Markl and C. Körner, Annu. Rev. Mater. Res. 46, 93 (2016).
S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Mater. Des. 95, 431 (2016).
H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, Bus. Inf. Syst. Eng. 6, 239 (2014).
R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction, 2nd ed. (London: The MIT Press, 2018), pp. 1–3.
X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Eng. 5, 721 (2019).
National Academies of Sciences, Engineering, and Medicine. Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop, 1st ed. (Washington, DC: The National Academies Press, 2019).
G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A. Elwany, Int. J. Adv. Manuf. Technol. 94, 3591 (2018).
Z. Hu and S. Mahadevan, The. Int. J. Adv. Manuf. Tech. 93, 2855 (2017).
L. Meng and J. Zhang, JOM-J. Min. Met. Mat. S. 72, 420 (2020).
T. Wang, T.-H. Kwok, C. Zhou, and S. Vader, J. Manuf. Syst. 47, 83 (2018).
M. Grasso and B.M. Colosimo, Meas. Sci. Technol. 28, 044005 (2017).
M. Mahesh, Y. Wong, J. Fuh, and H. Loh, Rapid Prototyp J. 10, 123 (2004).
J. Francis and L. Bian, Manuf. Lett. 20, 10 (2019).
S.L. Chan, Y. Lu, and Y. Wang, J. Manuf. Syst. 46, 115 (2018).
Z. Zhu, N. Anwer, Q. Huang, and L. Mathieu, CIRP Ann. 67, 157 (2018).
G. Tapia, A. Elwany, and H. Sang, Addit. Manuf. 12, 282 (2016).
C. Kamath, Int. J. Adv. Manuf. Technol. 86, 1659 (2016).
F. Caiazzo and A. Caggiano, Mat. 11, 444 (2018).
W. Rong-Ji, L. Xin-hua, W. Qing-ding, and W. Lingling, The. Int. J. Adv. Manuf. Technol. 42, 1035 (2009).
J. Zhang, P. Wang, and R.X. Gao, Comput. Ind. 107, 11 (2019).
Z. Li, Z. Zhang, J. Shi, and D. Wu, Robot. Cim-Int. Manuf. 57, 488 (2019).
M. Mozaffar, A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, K. Ehmanna, and J. Cao, Manuf. Lett. 18, 35 (2018).
L. Song, W. Huang, X. Han, J. Mazumder, and I.E.E.E.T. Ind, Electron. 64, 633 (2016).
S. Chowdhury and A. Sarn, ASME Int. Manuf. Sci. Eng. Conf., Proc. (2016) https://doi.org/10.1115/msec2016-8784.
T. Kohonen, Neural Netw. 1, 3 (1988).
D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Cogn. Model. 5, 1 (1988).
A.R. Barron, Nato. Adv. Sci. I. C-Mat. 335, 561 (1991).
F. Girosi, M. Jones, and T. Poggio, Neural Comput. 7, 219 (1995).
S. Haykin, Neural networks: a comprehensive foundation, 1st ed. (Prentice Hall PTR: Upper Saddle River, NJ, 1994).
C.K. Williams and C.E. Rasmussen, Gaussian Processes for Machine Learning, 2nd ed. (London: MIT Press, 2006).
R. Rai, J. Elmer, T. Palmer, and T. DebRoy, J. Phys. D Appl. Phys. 40, 5753 (2007).
X. Yao, S.K. Moon, and G. Bi, Rapid Prototyping J. 23, 983 (2017).
Y. Zhang, G.S. Hong, D. Ye, K. Zhu, and J.Y. Fuh, Mater. Des. 156, 458 (2018).
L. Scime and J. Beuth, Addit. Manuf. 19, 114 (2018).
L. Scime and J. Beuth, Addit. Manuf. 24, 273 (2018).
J. Mazumder, Proc. CIRP 36, 187 (2015).
M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M.A. Tschopp, and L. Bian, J. Manuf. Syst. 47, 69 (2018).
M.S. Tootooni, A. Dsouza, R. Donovan, P.K. Rao, Z.J. Kong, and P. Borgesen, J. Eng. Ind. 139, 091005 (2017).
K. Aoyagi, H. Wang, H. Sudo, and A. Chiba, Addit. Manuf. 27, 353 (2019).
D. Ye, G.S. Hong, Y. Zhang, K. Zhu, and J.Y.H. Fuh, The. Int. J. Adv. Manuf. Tech. 96, 1 (2018).
Z. Shen, X. Shang, M. Zhao, X. Dong, G. Xiong, and F.-Y. Wang, A learning-based framework for error compensation in 3-d printing. IEEE T. Cybern. 49, 4042 (2019).
R. Jafari-Marandi, M. Khanzadeh, W. Tian, B. Smith, and L. Bian, J. Manuf. Syst. 51, 29 (2019).
C. Gobert, E.W. Reutzel, J. Petrich, A.R. Nassar, and S. Phoha, Addit. Manuf. 21, 517 (2018).
A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, and R. Teti, CIRP Ann. 68, 451 (2019).
S.A. Shevchik, C. Kenel, C. Leinenbach, and K. Wasmer, Addit. Manuf. 21, 598 (2018).
J.R. Quinlan, Mach. Learn. 1, 81 (1986).
C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995).
C.-W. Hsu and C.-J. Lin, IEEE T. Neural Netw. 13, 415 (2002).
A. Krizhevsky, I. Sutskever, and G.E. Hinton, Adv. Neur. In., 1097 (2012).
P. Bühlmann and S. Van De Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications, 1st ed. (Springer : Berlin, Germany, 2011).
G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 1st ed. (New York: Springer, 2013).
A.Y. Ng, Proceedings of the twenty-first international conference on machine learning, 78 (2004).
K. Hornik, M. Stinchcombe, and H. White, Neural Netw 2, 359 (1989).
E. Popova, T.M. Rodgers, X. Gong, A. Cecen, J.D. Madison, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 6, 54 (2017).
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014).
M. Khanzadeh, P. Rao, R. Jafari-Marandi, B.K. Smith, M.A. Tschopp, and L. Bian, J. Eng. Ind. 140, 031011 (2018).
M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, and L. Bian, IISE Transactions 51, 437 (2019).
H. Wu, Z. Yu, and Y. Wang, Measurement 136, 445 (2019).
Y. Yang, M. He, and L. Li, Proc. CIRP 80, 741 (2019).
Z. Wang, P. Liu, Y. Xiao, X. Cui, Z. Hu, and L. Chen, J. Eng. Ind. 141, 081004 (2019).
Acknowledgement
The work is conducted under CCDC Army Research Laboratory Cooperative Research and Development Agreement 19-013-001. This work is partially supported by “Human Resources Program in Energy Technology (No. 20194030202450)” and “Power Generation & Electricity Delivery Grant (No. 20193310100030)” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Republic of Korea.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Meng, L., McWilliams, B., Jarosinski, W. et al. Machine Learning in Additive Manufacturing: A Review. JOM 72, 2363–2377 (2020). https://doi.org/10.1007/s11837-020-04155-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-020-04155-y