Abstract
The stir zone temperature and microstructures are compared in friction stir spot welds produced in Al 5754 and Al 6061 alloys. Electron backscattered diffraction was used to determine the relationship between tool rotation speed during welding and final stir zone grain size. Comparison of the grain sizes in rapidly quenched welds with those in air-cooled joints confirmed that grain growth occurred only in Al 6061 spot welds. There was no evidence of abnormal grain growth in the stir zones of Al 6061 welds; the final grain size could be represented using an Arrhenius equation. The strain rates during welding were determined by incorporating the stir zone temperature and average subgrain sizes in quenched spot welds in the Zener–Hollomon relation. When the tool rotation speed increased from 750 to 3000 RPM, the strain rate values ranged from 180 to 497 s−1 in Al 5754 spot welds and from 55 to 395 s−1 in Al 6061 spot welds. It is suggested that a no-slip boundary condition may be appropriate during numerical modeling of Al 5754 and 6061 friction stir spot welding. This is not the case during Al 7075, Al 2024, and Mg-alloy AZ91 spot welding because spontaneous melting facilitates slippage at the tool contact interface.














Similar content being viewed by others
References
W.M. Thomas, E.D. Nicholas, J.D. Needham, M.G. Murch, P. Templesmith, and C.J. Daws: G.B. Patent Application No. 9125978.8, Dec. 1991; U.S. Patent No. 5460317, Oct. 1995
R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R., 2005, 50:1–78
W. Woo, H. Choo, D.W. Brown, P.K. Liaw, Z. Feng: Scripta Mater., 2006, 54(11):1859–64
A.J. Ramirez, M.C. Juhas: Mater. Sci. Forum, 2003, 426–432:2999–3004
C.G. Andersson, R.E. Andrews, B.G.I. Dance, M.J. Russell, E.J. Olden, and R.M. Sanderson: Proc. 2nd Int. Symp. on Friction Stir Welding, Cambridge, 2000, TWI Ltd., Abington, United Kingdom
J.-H. Cho, P.R. Dawson: Metall. Mater. Trans. A, 2006, 37A:1147–64
S.R. Strand, C.D. Sorensen, and T.W. Nelson: Proc. ANTEC 2003 Conf., ASM INTERNATIONAL, Materials Park, OH, 2003, pp. 1078–82
C. Schilling and J. Dos Santos: International Patent Publication No. WO 01/36144A1, May 25, 2001
A. Gerlich, P. Su, T.H. North: J. Mater. Sci., 2005, 40(24):6473–81
R. Sakano, K. Murakami, K. Yamashita, T. Hyoie, M. Fujimoto, M. Inuzuka, Y. Nagao, and H. Kashiki: Proc. 7th Int. Symp. JWS, 2001, pp. 645–50
P.-C. Lin, S.-H. Lin, J. Pan, T. Pan, J.M. Nicholson, and M.A. Garman: SAE Technical Series, 2004–01–1330
P. Su, A. Gerlich, and T.H. North: SAE Technical Series, 2005–01–1255
H. Jin, S. Saimoto, M. Ball, P.L. Threadgill: Mater. Sci. Technol., 2001, 17:1605–14
M.P. Miles, B.J. Decker, T.W. Nelson: Metall. Mater. Trans. A, 2004, 35A:3461–68
S. Lim, S. Kim, C.-G. Lee, S. Kim: Metall. Mater. Trans. A, 2004, 35A:2829–35
L. Liu, H. Nakayama, S. Fukumoto, A. Yamamoto, H. Tsubakino: Mater. Trans., 2004, 45(8):2665–68
L. Ke, L. Xing, J.E. Indacochea: Metall. Mater. Trans. B, 2004, 35B:153–60
H. Liu, H. Fujii, M. Maeda, K. Nogi: J. Mater. Sci. Lett., 2003, 22(15):1061–63
G. Liu, L.E. Murr, C-S. Niou, J.C. McClure, F.R. Vega: Scripta Mater., 1997, 37(3):355–61
S.H. Kang, W.H. Bang, J.H. Cho, H.N. Han, K.H. Oh, C.G. Lee, S.-J. Kim: Mater. Sci. Forum, 2005, 495–497:901–06.
K.N. Krishnan: J. Mater. Sci., 2002, 37:437–80
T.H. North, G.J. Bendzsak, C.B. Smith, and G.H. Luan: Proc. 7th Int. Symp. Kobe, Japan, 2001, JWS, Tokyo, pp. 621–32
A. Gerlich, G. Avramovic-Cingara, T.H. North: Metall. Mater. Trans. A, 2006, 37A:2773–86
A. Gerlich, P. Su, M. Yamamoto, and T.H. North: J. Mater. Sci., in press
P. Su, A. Gerlich, T.H. North, G.J. Bendzsak: Sci. Tech. Weld. Joining, 2006, 11(2):163–69
P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak: SAE Technical Series, 2006–01–0971
A. Gerlich, P. Su, T.H. North: Sci. Tech. Weld. Joining, 2005, 10(6):647–52.
A. Gerlich, P. Su, T.H. North, G.J. Bendzsak: Mater. Forum, 2005, 29:290–94
A. Gerlich, P. Su, and T.H. North: Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, eds., TMS, Warrendale, PA, pp. 383–88
A. Gerlich, G. Avramovic-Cingara, T.H. North: Mater. Sci. Forum, 2006, 519–521:1107–12
Aluminum : The Corrosion Resistant Automotive Material, The Aluminum Association, Arlington, Virginia, USA, 2001, p. 20. Publication AT7
T. Lyman: Metals Handbook, 8th ed., Vol. 1. ASM INTERNATIONAL, Metals Park, OH, 1961, p. 945
R.E. Sanders, S.F. Baumann, and H.C. Stumpf: Treatise on Materials Science and Technology, Academic Press, New York, NY, 1989, vol. 31, p. 65
P.A. Hollinshead: Mater. Sci. Technol., 1992, 8: 57
P. Ratchev, B. Verlinden, P. van Houtte: Acta Metall. Mater., 1995, 43(2):621–29
H.J. McQueen and J.J. Jonas: Treatise on Materials Science Technology, Vol. 6. Academic Press, New York, NY, 1975, pp. 393–493
H.J. McQueen, J.E. Hocket: Metall. Trans. A, 1970, 1:2997–3004
G. Avramovic-Cingara, H.J. McQueen, A. Hopkins, V. Jain, and D. Perovic: in Light Weight Alloys for Aerospace Applications, E.W. Lee, N.J. Kim, and K.V. Jata, eds., TMS-AIME, Warrendale, PA, pp. 333–47
G. Avramovic-Cingara, H.J. McQueen: Aluminium, 1994, 70(3–4):214–19
G. Avramovic-Cingara, D.D. Perovic, H.J. McQueen: Metall. Mater. Trans. A, 1996, 27A:3478–90
E. Cerri, E. Evangelista, A. Forcellese, H.J. McQueen: Mater. Sci. Eng., 1995, A197:181–98
T. Sheppard: 2nd Int. Conf. on Aluminum Alloys—Their Physical and Mechanical Properties, C.Q. Chen and E.A. Starke, eds., International Academic Publishers, Beijing, 1990, pp. 744–54
E. Evangelista, H.J. McQueen, and E. Bonetti: Deformation of Multi-phase and Particle Containing Materials, Risø National Laboratory, Roskilde, Denmark, 1983, pp. 243–50
M.R. Clinch, S.J. Harris, W. Hepples, N.J.H. Holroyd, J.V. Wood: Mater. Sci. Forum, 2002, 396–402:521–26
T. Pettersen, B. Holmedal, E. Nes: Metall. Mater. Trans. A, 2003, 34A:2737–44
W.H. Van Geertruyden, W.Z. Misiolek, P.T. Wang: Mater. Sci. Eng. A, 2006, 419:105–14
ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992
P. Su, A. Gerlich, T.H. North, G.J. Bendzsak: Metall. Mater. Trans. A, 2007, 38A:584–95
G.J. Bendzsak, T.H. North and C.B. Smith: Proc. 2nd Int. Conf. Friction Stir Welding, Gothenburg, Sweden, 2000, TWI, Abington, United Kingdom, 2000
F.P. Bowden, K.E.W. Ridler: Proc. R. Soc. London, Ser. A, 1936, 154(883):640–56
F.P. Bowden, P.H. Thomas: Proc. R. Soc. London, Ser. A, 1954, 223(1152):29–40
A. Gerlich, P. Su, G.J. Bendzsak, and T.H. North: in Friction Stir Welding and Processing III, K.V. Jata, M.W. Mahoney, and R.S. Mishra, eds., TMS, Warrendale, PA, 2005, pp. 249–32
T.F.J. Quinn, W.O. Winer: Wear, 1985, 102:67–80
M. Yamamoto, P. Su, A. Gerlich, and T.H. North: SAE Technical Series, 2007–01–1700
L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, 1976, p. 283
T. Watanabe, S. Kimura, S. Karashima: Phil. Mag., 1984, A49:845–64
T. Watanabe: Mater. Sci. Forum, 1997, 243–245:21–30
O.D. Sherby, O.A. Ruano: in Superplastic Forming of Structural Alloys, N.E. Paton C.H. Hamilton, eds., TMS-AIME, New York, NY, 1982, p. 241
I. Charit, R.S. Mishra: Mater. Sci. Eng. A, 2003, 359A(1–2):290–96
Z.Y. Ma, R.S. Mishra, M.W. Mahoney: Acta Mater., 2002, 50(17):4419–30
P. Cavaliere: J. Mater. Sci., 2006, 41(13):4299–302
P. Cavaliere, A. Squillace: Mater. Characterization, 2005, 55(2):136–42
F.J. Humpreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1995, p. 283
C. Frois, O. Dimitrov: Ann. Chim. Paris, 1966, 1:113
T. Shibayanagi, M. Maeda, M. Naka: J. Jpn. Inst. Light Met., 2006, 56(7):347–53
M.M. Attallah, H.G. Salem: Mater. Sci. Eng. A, 2005, 391(1–2):51–59
K.A.A. Hassan, A.F. Norman, D.A. Price, P.B. Prangnell: Acta Mater., 2003, 51(7):1923–36
R.S. Mishra, R.K. Islamgaliev, T.W. Nelson, Y. Hovansky, M.W. Mahoney: Friction Stir Welding and Processing, TMS, Warrendale, PA, 2001, pp. 205–16
Y.S. Sato, M. Urata, H. Kokawa: Metall. Mater. Trans. A, 2002, 33A:625–35
F.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982
Ø. Frigaard, Ø. Grong, J. Hjelen, S. Gulbrandsen-Dahl, and O.T. Midling: Proc. 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, CA, 1999, TWI, Abington, United Kingdom, 1999
K.A.A. Hassan, B.P. Wynne, and P.B. Prangnell: Proc. 4th Int. Conf. Friction Stir Welding, Park City, UT, 2003, TWI, Abington, United Kingdom, 2003
C.I. Chang, C.J. Lee, J.C. Huang: Scripta Mater., 2004, 51:509–14
K.V. Jata, S.L. Semiatin: Scripta Mater., 2000, 43(8):743–49
P.A. Colegrove, H.R. Shercliff: Sci. Tech. Weld. Joining, 2006, 11(4):429–41
R. Nandan, G.G. Roy, T. DebRoy: Metall. Mater. Trans. A, 2006, 37A:1247–59
P. Su, A. Gerlich, M. Yamamoto, and T.H. North: J. Mater. Sci., 2007, in press
Acknowledgments
The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada during this project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted January 8, 2007.
Appendix
Appendix
Figure A1 shows the thermal cycle when the Al 6061 spot weld cools to room temperature. The cooling cycle in Al 6061 spot welds made using a tool rotational speed of 3000 RPM was determined by locating 0.25-mm-diameter thermocouples in drilled holes in test sections at a location 0.5 mm from the pin periphery and 1.0 mm below the tool shoulder. It has been confirmed recently that the stir zone temperature cannot be measured when thermocouples are embedded in the workpiece prior to spot welding, because the thermocouples are displaced outward and downward when a helical vertical rotational flow of material is created within the stir zone.[48,54] For this reason, a sixth-order polynomial regression was used to extrapolate the measured temperature values in the Al 6061 component to the peak temperature of 541 °C, which was found using the thermocouple located within the rotating tool at a distance of 0.2 mm from its tip.
Although isothermal grain growth is described by Eq. [4], this equation may be used when calculating grain growth under the nonisothermal cooling conditions indicated in Figure A1. The amount of grain growth, which occurs as the spot weld cools to room temperature is found by dividing the cooling curve into short time intervals (Δt = t 2 – t 1 equal to 0.02 s) and calculating in the manner shown in Figure A2. For example, when an initial grain size d 0 is assumed, the amount of grain growth, which occurs at an initial temperature T 1, is used to obtain the grain size d 1. During the subsequent time interval t 2, grain size d 2 is calculated at the lower temperature T 2. This process is iterated until the final grain size d f is obtained when the cooling cycle ends.
Rights and permissions
About this article
Cite this article
Gerlich, A., Yamamoto, M. & North, T. Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metall Mater Trans A 38, 1291–1302 (2007). https://doi.org/10.1007/s11661-007-9155-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-007-9155-0