[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The stir zone temperature and microstructures are compared in friction stir spot welds produced in Al 5754 and Al 6061 alloys. Electron backscattered diffraction was used to determine the relationship between tool rotation speed during welding and final stir zone grain size. Comparison of the grain sizes in rapidly quenched welds with those in air-cooled joints confirmed that grain growth occurred only in Al 6061 spot welds. There was no evidence of abnormal grain growth in the stir zones of Al 6061 welds; the final grain size could be represented using an Arrhenius equation. The strain rates during welding were determined by incorporating the stir zone temperature and average subgrain sizes in quenched spot welds in the Zener–Hollomon relation. When the tool rotation speed increased from 750 to 3000 RPM, the strain rate values ranged from 180 to 497 s−1 in Al 5754 spot welds and from 55 to 395 s−1 in Al 6061 spot welds. It is suggested that a no-slip boundary condition may be appropriate during numerical modeling of Al 5754 and 6061 friction stir spot welding. This is not the case during Al 7075, Al 2024, and Mg-alloy AZ91 spot welding because spontaneous melting facilitates slippage at the tool contact interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.D. Needham, M.G. Murch, P. Templesmith, and C.J. Daws: G.B. Patent Application No. 9125978.8, Dec. 1991; U.S. Patent No. 5460317, Oct. 1995

  2. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R., 2005, 50:1–78

    Article  CAS  Google Scholar 

  3. W. Woo, H. Choo, D.W. Brown, P.K. Liaw, Z. Feng: Scripta Mater., 2006, 54(11):1859–64

    Article  CAS  Google Scholar 

  4. A.J. Ramirez, M.C. Juhas: Mater. Sci. Forum, 2003, 426–432:2999–3004

    Google Scholar 

  5. C.G. Andersson, R.E. Andrews, B.G.I. Dance, M.J. Russell, E.J. Olden, and R.M. Sanderson: Proc. 2nd Int. Symp. on Friction Stir Welding, Cambridge, 2000, TWI Ltd., Abington, United Kingdom

  6. J.-H. Cho, P.R. Dawson: Metall. Mater. Trans. A, 2006, 37A:1147–64

    CAS  Google Scholar 

  7. S.R. Strand, C.D. Sorensen, and T.W. Nelson: Proc. ANTEC 2003 Conf., ASM INTERNATIONAL, Materials Park, OH, 2003, pp. 1078–82

  8. C. Schilling and J. Dos Santos: International Patent Publication No. WO 01/36144A1, May 25, 2001

  9. A. Gerlich, P. Su, T.H. North: J. Mater. Sci., 2005, 40(24):6473–81

    Article  CAS  Google Scholar 

  10. R. Sakano, K. Murakami, K. Yamashita, T. Hyoie, M. Fujimoto, M. Inuzuka, Y. Nagao, and H. Kashiki: Proc. 7th Int. Symp. JWS, 2001, pp. 645–50

  11. P.-C. Lin, S.-H. Lin, J. Pan, T. Pan, J.M. Nicholson, and M.A. Garman: SAE Technical Series, 2004–01–1330

  12. P. Su, A. Gerlich, and T.H. North: SAE Technical Series, 2005–01–1255

  13. H. Jin, S. Saimoto, M. Ball, P.L. Threadgill: Mater. Sci. Technol., 2001, 17:1605–14

    CAS  Google Scholar 

  14. M.P. Miles, B.J. Decker, T.W. Nelson: Metall. Mater. Trans. A, 2004, 35A:3461–68

    Article  CAS  Google Scholar 

  15. S. Lim, S. Kim, C.-G. Lee, S. Kim: Metall. Mater. Trans. A, 2004, 35A:2829–35

    Article  CAS  Google Scholar 

  16. L. Liu, H. Nakayama, S. Fukumoto, A. Yamamoto, H. Tsubakino: Mater. Trans., 2004, 45(8):2665–68

    Article  CAS  Google Scholar 

  17. L. Ke, L. Xing, J.E. Indacochea: Metall. Mater. Trans. B, 2004, 35B:153–60

    Article  CAS  Google Scholar 

  18. H. Liu, H. Fujii, M. Maeda, K. Nogi: J. Mater. Sci. Lett., 2003, 22(15):1061–63

    Article  CAS  Google Scholar 

  19. G. Liu, L.E. Murr, C-S. Niou, J.C. McClure, F.R. Vega: Scripta Mater., 1997, 37(3):355–61

    Article  CAS  Google Scholar 

  20. S.H. Kang, W.H. Bang, J.H. Cho, H.N. Han, K.H. Oh, C.G. Lee, S.-J. Kim: Mater. Sci. Forum, 2005, 495–497:901–06.

    Google Scholar 

  21. K.N. Krishnan: J. Mater. Sci., 2002, 37:437–80

    Article  Google Scholar 

  22. T.H. North, G.J. Bendzsak, C.B. Smith, and G.H. Luan: Proc. 7th Int. Symp. Kobe, Japan, 2001, JWS, Tokyo, pp. 621–32

  23. A. Gerlich, G. Avramovic-Cingara, T.H. North: Metall. Mater. Trans. A, 2006, 37A:2773–86

    Article  CAS  Google Scholar 

  24. A. Gerlich, P. Su, M. Yamamoto, and T.H. North: J. Mater. Sci., in press

  25. P. Su, A. Gerlich, T.H. North, G.J. Bendzsak: Sci. Tech. Weld. Joining, 2006, 11(2):163–69

    Article  Google Scholar 

  26. P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak: SAE Technical Series, 2006–01–0971

  27. A. Gerlich, P. Su, T.H. North: Sci. Tech. Weld. Joining, 2005, 10(6):647–52.

    Article  CAS  Google Scholar 

  28. A. Gerlich, P. Su, T.H. North, G.J. Bendzsak: Mater. Forum, 2005, 29:290–94

    CAS  Google Scholar 

  29. A. Gerlich, P. Su, and T.H. North: Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, eds., TMS, Warrendale, PA, pp. 383–88

  30. A. Gerlich, G. Avramovic-Cingara, T.H. North: Mater. Sci. Forum, 2006, 519–521:1107–12

    Google Scholar 

  31. Aluminum : The Corrosion Resistant Automotive Material, The Aluminum Association, Arlington, Virginia, USA, 2001, p. 20. Publication AT7

  32. T. Lyman: Metals Handbook, 8th ed., Vol. 1. ASM INTERNATIONAL, Metals Park, OH, 1961, p. 945

  33. R.E. Sanders, S.F. Baumann, and H.C. Stumpf: Treatise on Materials Science and Technology, Academic Press, New York, NY, 1989, vol. 31, p. 65

  34. P.A. Hollinshead: Mater. Sci. Technol., 1992, 8: 57

    CAS  Google Scholar 

  35. P. Ratchev, B. Verlinden, P. van Houtte: Acta Metall. Mater., 1995, 43(2):621–29

    Article  CAS  Google Scholar 

  36. H.J. McQueen and J.J. Jonas: Treatise on Materials Science Technology, Vol. 6. Academic Press, New York, NY, 1975, pp. 393–493

  37. H.J. McQueen, J.E. Hocket: Metall. Trans. A, 1970, 1:2997–3004

    CAS  Google Scholar 

  38. G. Avramovic-Cingara, H.J. McQueen, A. Hopkins, V. Jain, and D. Perovic: in Light Weight Alloys for Aerospace Applications, E.W. Lee, N.J. Kim, and K.V. Jata, eds., TMS-AIME, Warrendale, PA, pp. 333–47

  39. G. Avramovic-Cingara, H.J. McQueen: Aluminium, 1994, 70(3–4):214–19

    CAS  Google Scholar 

  40. G. Avramovic-Cingara, D.D. Perovic, H.J. McQueen: Metall. Mater. Trans. A, 1996, 27A:3478–90

    Article  CAS  Google Scholar 

  41. E. Cerri, E. Evangelista, A. Forcellese, H.J. McQueen: Mater. Sci. Eng., 1995, A197:181–98

    CAS  Google Scholar 

  42. T. Sheppard: 2nd Int. Conf. on Aluminum Alloys—Their Physical and Mechanical Properties, C.Q. Chen and E.A. Starke, eds., International Academic Publishers, Beijing, 1990, pp. 744–54

  43. E. Evangelista, H.J. McQueen, and E. Bonetti: Deformation of Multi-phase and Particle Containing Materials, Risø National Laboratory, Roskilde, Denmark, 1983, pp. 243–50

  44. M.R. Clinch, S.J. Harris, W. Hepples, N.J.H. Holroyd, J.V. Wood: Mater. Sci. Forum, 2002, 396–402:521–26

    Google Scholar 

  45. T. Pettersen, B. Holmedal, E. Nes: Metall. Mater. Trans. A, 2003, 34A:2737–44

    Article  CAS  Google Scholar 

  46. W.H. Van Geertruyden, W.Z. Misiolek, P.T. Wang: Mater. Sci. Eng. A, 2006, 419:105–14

    Article  CAS  Google Scholar 

  47. ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992

  48. P. Su, A. Gerlich, T.H. North, G.J. Bendzsak: Metall. Mater. Trans. A, 2007, 38A:584–95

    Article  CAS  Google Scholar 

  49. G.J. Bendzsak, T.H. North and C.B. Smith: Proc. 2nd Int. Conf. Friction Stir Welding, Gothenburg, Sweden, 2000, TWI, Abington, United Kingdom, 2000

  50. F.P. Bowden, K.E.W. Ridler: Proc. R. Soc. London, Ser. A, 1936, 154(883):640–56

    Article  Google Scholar 

  51. F.P. Bowden, P.H. Thomas: Proc. R. Soc. London, Ser. A, 1954, 223(1152):29–40

    Google Scholar 

  52. A. Gerlich, P. Su, G.J. Bendzsak, and T.H. North: in Friction Stir Welding and Processing III, K.V. Jata, M.W. Mahoney, and R.S. Mishra, eds., TMS, Warrendale, PA, 2005, pp. 249–32

  53. T.F.J. Quinn, W.O. Winer: Wear, 1985, 102:67–80

    Article  Google Scholar 

  54. M. Yamamoto, P. Su, A. Gerlich, and T.H. North: SAE Technical Series, 2007–01–1700

  55. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, 1976, p. 283

    Google Scholar 

  56. T. Watanabe, S. Kimura, S. Karashima: Phil. Mag., 1984, A49:845–64

    Google Scholar 

  57. T. Watanabe: Mater. Sci. Forum, 1997, 243–245:21–30

    Google Scholar 

  58. O.D. Sherby, O.A. Ruano: in Superplastic Forming of Structural Alloys, N.E. Paton C.H. Hamilton, eds., TMS-AIME, New York, NY, 1982, p. 241

    Google Scholar 

  59. I. Charit, R.S. Mishra: Mater. Sci. Eng. A, 2003, 359A(1–2):290–96

    Google Scholar 

  60. Z.Y. Ma, R.S. Mishra, M.W. Mahoney: Acta Mater., 2002, 50(17):4419–30

    Google Scholar 

  61. P. Cavaliere: J. Mater. Sci., 2006, 41(13):4299–302

    Article  CAS  Google Scholar 

  62. P. Cavaliere, A. Squillace: Mater. Characterization, 2005, 55(2):136–42

    Article  CAS  Google Scholar 

  63. F.J. Humpreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1995, p. 283

    Google Scholar 

  64. C. Frois, O. Dimitrov: Ann. Chim. Paris, 1966, 1:113

    Google Scholar 

  65. T. Shibayanagi, M. Maeda, M. Naka: J. Jpn. Inst. Light Met., 2006, 56(7):347–53

    Article  CAS  Google Scholar 

  66. M.M. Attallah, H.G. Salem: Mater. Sci. Eng. A, 2005, 391(1–2):51–59

    Google Scholar 

  67. K.A.A. Hassan, A.F. Norman, D.A. Price, P.B. Prangnell: Acta Mater., 2003, 51(7):1923–36

    Article  CAS  Google Scholar 

  68. R.S. Mishra, R.K. Islamgaliev, T.W. Nelson, Y. Hovansky, M.W. Mahoney: Friction Stir Welding and Processing, TMS, Warrendale, PA, 2001, pp. 205–16

    Google Scholar 

  69. Y.S. Sato, M. Urata, H. Kokawa: Metall. Mater. Trans. A, 2002, 33A:625–35

    Article  Google Scholar 

  70. F.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982

    Google Scholar 

  71. Ø. Frigaard, Ø. Grong, J. Hjelen, S. Gulbrandsen-Dahl, and O.T. Midling: Proc. 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, CA, 1999, TWI, Abington, United Kingdom, 1999

  72. K.A.A. Hassan, B.P. Wynne, and P.B. Prangnell: Proc. 4th Int. Conf. Friction Stir Welding, Park City, UT, 2003, TWI, Abington, United Kingdom, 2003

  73. C.I. Chang, C.J. Lee, J.C. Huang: Scripta Mater., 2004, 51:509–14

    Article  CAS  Google Scholar 

  74. K.V. Jata, S.L. Semiatin: Scripta Mater., 2000, 43(8):743–49

    Article  CAS  Google Scholar 

  75. P.A. Colegrove, H.R. Shercliff: Sci. Tech. Weld. Joining, 2006, 11(4):429–41

    Article  CAS  Google Scholar 

  76. R. Nandan, G.G. Roy, T. DebRoy: Metall. Mater. Trans. A, 2006, 37A:1247–59

    CAS  Google Scholar 

  77. P. Su, A. Gerlich, M. Yamamoto, and T.H. North: J. Mater. Sci., 2007, in press

Download references

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.H. North.

Additional information

Manuscript submitted January 8, 2007.

Appendix

Appendix

Figure A1 shows the thermal cycle when the Al 6061 spot weld cools to room temperature. The cooling cycle in Al 6061 spot welds made using a tool rotational speed of 3000 RPM was determined by locating 0.25-mm-diameter thermocouples in drilled holes in test sections at a location 0.5 mm from the pin periphery and 1.0 mm below the tool shoulder. It has been confirmed recently that the stir zone temperature cannot be measured when thermocouples are embedded in the workpiece prior to spot welding, because the thermocouples are displaced outward and downward when a helical vertical rotational flow of material is created within the stir zone.[48,54] For this reason, a sixth-order polynomial regression was used to extrapolate the measured temperature values in the Al 6061 component to the peak temperature of 541 °C, which was found using the thermocouple located within the rotating tool at a distance of 0.2 mm from its tip.

Fig. A1
figure A1

Thermal cycle following friction stir spot welding of Al 6061 using a tool rotational speed of 3000 RPM, showing the sixth-order polynomial regression extrapolation to a measured peak temperature of 541 °C

Although isothermal grain growth is described by Eq. [4], this equation may be used when calculating grain growth under the nonisothermal cooling conditions indicated in Figure A1. The amount of grain growth, which occurs as the spot weld cools to room temperature is found by dividing the cooling curve into short time intervals (Δt = t 2 t 1 equal to 0.02 s) and calculating in the manner shown in Figure A2. For example, when an initial grain size d 0 is assumed, the amount of grain growth, which occurs at an initial temperature T 1, is used to obtain the grain size d 1. During the subsequent time interval t 2, grain size d 2 is calculated at the lower temperature T 2. This process is iterated until the final grain size d f is obtained when the cooling cycle ends.

Fig. A2
figure A2

Schematic illustrating the nonisothermal grain growth calculation methodology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, A., Yamamoto, M. & North, T. Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metall Mater Trans A 38, 1291–1302 (2007). https://doi.org/10.1007/s11661-007-9155-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9155-0

Keywords