[go: up one dir, main page]

Skip to main content
Log in

Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N+2)-particle nonmaximally entangled state as the quantum channel

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present a scheme for multiparty-controlled teleportation of an arbitrary high-dimensional GHZ-class state with a d-dimensional (N+2)-particle GHZ state following some ideas from the teleportation (Chinese Physics B, 2007, 16: 2867). This scheme has the advantage of transmitting much fewer particles for controlled teleportation of an arbitrary multiparticle GHZ-class state. Moreover, we discuss the application of this scheme by using a nonmaximally entangled state as its quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett C H, Brassad G. Proc. IEEE. Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175

    Google Scholar 

  2. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  3. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  5. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  ADS  Google Scholar 

  6. Wen K, Long G L. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys Rev A, 2005, 72: 022336

    Article  ADS  Google Scholar 

  7. Ekert A K. Quantum cryptography based on Bells theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bells theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  10. Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  11. Zhang X L. One-way quantum identity authentication based on public key. Chin Sci Bull, 2009, 54: 2018–2021

    Article  Google Scholar 

  12. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  13. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  14. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secretsharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  15. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  16. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  ADS  MATH  Google Scholar 

  17. Deng F G, Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2005, 340: 43–50

    Article  ADS  MATH  Google Scholar 

  18. Deng F G, Zhou H Y, Long G L. Circular quantum secret sharing. J Phys A, 2006, 39: 14089

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  20. Deng F G, Long G L. Secure direct communication with a quantum onetime pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  21. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  22. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  23. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  24. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  25. Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret report. Chin Phys Lett, 2006, 23: 1676–1679

    Article  MathSciNet  ADS  Google Scholar 

  26. Li X H, Li C Y, Deng F G, et al. Multiparty quantum remote secret conference. Chin Phys Lett, 2007, 24: 23–26

    Article  ADS  MATH  Google Scholar 

  27. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6–10

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  30. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  32. Furusawa A, Sørensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  ADS  Google Scholar 

  33. Boschi D, Branca S, Martini F D, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1998, 80: 1121–1125

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Kim Y H, Kulik S P, Shih Y. Quantum teleportation of a polarization state with a complete bell state measurement. Phys Rev Lett, 2001, 86: 1370–1373

    Article  ADS  Google Scholar 

  35. Riebe M, Häffner H, Roos C F, et al. Deterministic quantum teleportation with atoms. Nature, 2004, 429: 734–737

    Article  ADS  Google Scholar 

  36. Barrett M D, Chaverini J, Schaetz T, et al. Deterministic quantum teleportation of atomic qubits. Nature, 2004, 429: 737–739

    Article  ADS  Google Scholar 

  37. Chen Y A, Chen S, Yuan Z S, et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Physics, 2008, 4: 103–107

    Article  MathSciNet  ADS  Google Scholar 

  38. Sherson J F, Krauter H, Olsson R K, et al. Quantum teleportation between light and matter. Nature, 2006, 443: 557–560

    Article  ADS  Google Scholar 

  39. Olmschenk S, Matsukevich D N, Maunz P, et al. Quantum teleportation between distant matter qubits. Science, 2009, 323: 486–489

    Article  ADS  Google Scholar 

  40. Jin X M, Ren J G, Yang B, et al. Experimental free-space quantum teleportation. Nature Photonics, 2010, 87: 376–381

    Article  ADS  Google Scholar 

  41. Gorbachev V N, Trubilko A I. Quantum teleportation of EPR pair by three-particle entanglement. 1999, arXiv: quant-ph/9906110

  42. Marinatto L, Weber T. Which kind of two-particle states can be teleported through a three-particle quantum channel? Found Phys Lett, 2000, 13: 119–132

    Article  MathSciNet  Google Scholar 

  43. Shi B S, Jiang Y K, Guo G C. Teleportation of an unknown state by W state. Phys Lett A, 2000, 268: 161–164

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Lu H, Guo G C. Teleportation of a two-particle entangled state via entanglement swapping. Phys Lett A, 2000, 276: 209–212

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Lee H W. Total teleportation of an entangled state. Phys Rev A, 2001, 64: 014302

    Article  ADS  Google Scholar 

  46. Yan F L, Yang L G. Economical teleportation of multiparticle quantum state. Nuovo Cimento B, 2003, 118: 79–82

    MathSciNet  ADS  Google Scholar 

  47. Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Phys Rev A, 2000, 61: 034301

    Article  MathSciNet  ADS  Google Scholar 

  48. Stenholm S, Bardroff P J. Teleportation of N-dimensional states. Phys Rev A, 1998, 58: 4373–4376

    Article  MathSciNet  ADS  Google Scholar 

  49. Son W, Lee J, Kim M S, et al. Conclusive teleportation of a ddimensional unknown state. Phys Rev A, 2001, 64: 064304

    Article  ADS  Google Scholar 

  50. Yan F L, Tan H G, Yang L G. Probabilistic teleportation of two-particle state of general formation. Commun Theor Phys, 2002, 37: 649–654

    MathSciNet  Google Scholar 

  51. Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states. Phys Lett A, 2003, 316: 297–303

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Yan F L, Ding H W. Probabilistic teleportation of an unknown twoparticle state with a four-particle pure entangled state and positive operator valued measure. Chin Phys Lett, 2006, 23: 17–20

    Article  ADS  Google Scholar 

  53. Yang C P, Guo G C. Multiparticle generalization of teleportation. Chin Phys Lett, 2000, 17: 162–164

    Article  ADS  Google Scholar 

  54. Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303

    Article  ADS  Google Scholar 

  55. Deng F G. Comment on “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement“. Phys Rev A, 2005, 72: 036301

    Article  ADS  Google Scholar 

  56. Wang Y H, Song H S. Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull, 2009, 54: 2599–2605

    Article  Google Scholar 

  57. Zuo X Q, Liu Y M, Zhang W, et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1906–1912

    Article  ADS  Google Scholar 

  58. Zhang X H, Yang Z Y and Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  59. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  60. Wang Y H, Yu C S, Song H S. Teleportation of an arbitrary multipartite GHZ-class state by one EPR pair. Chin Phys Lett, 2006, 23: 3142–3144

    Article  ADS  Google Scholar 

  61. Zhou P, Li X H, Deng F G, et al. Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing. Chin Phys, 2007, 16: 2867–2874

    Article  ADS  Google Scholar 

  62. Zhang Q, Goebel A, Wagenknecht C, et al. Experimental Quantum Teleportation of a Two-Qubit Composite System. 2006, arXiv: quantph/0609129

  63. Zhou J, Hou C, Zhang Y D. Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys Rev A, 2001, 64: 012301

    Article  ADS  Google Scholar 

  64. Zeng B, Liu X S, Li Y S, et al. General schemes for multi-particle d-dimensional Cat-like state teleportation. Commun Theor Phys, 2002, 38: 537–540

    MathSciNet  Google Scholar 

  65. Wang X W, Wang Z Y, Xia L X. Scheme for teleportation of a multipartite quantum state by using a single entangled pair as quantum channel. Commun Theor Phys, 2007, 47: 257–260

    Article  MathSciNet  Google Scholar 

  66. Yan L H, Gao Y F. Simplified scheme for teleportation of a multipartite quantum state using a single entangled pair. Commun Theor Phys, 2009, 51: 235–238

    Article  ADS  MATH  Google Scholar 

  67. Nguyen B A. Teleportation of two-quNit entanglement: Exploiting local resources. Phys Lett A, 2005, 341: 9–14

    Article  MATH  Google Scholar 

  68. Xia Y, Song J, Song H S, et al. Generalized teleportation of a d-level N-particle GHZ state with one pair of entangled particles as the quantum channel. Int J Theor Phys, 2008, 47: 2835–2840

    Article  MathSciNet  MATH  Google Scholar 

  69. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Phys Rev A, 1998, 58: 4394–4400

    Article  MathSciNet  ADS  Google Scholar 

  70. Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys Rev A, 2004, 70: 022329

    Article  ADS  Google Scholar 

  71. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  72. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2007, 24: 1151–1153

    Article  ADS  Google Scholar 

  73. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B, 2006, 39: 1975–1983

    Article  ADS  Google Scholar 

  74. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301

    Article  ADS  Google Scholar 

  75. Zhou P, Li X H, Deng F G, et al. Multi-party controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J Phys A, 2007, 40: 13121

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301

    Article  ADS  Google Scholar 

  77. Hsu L Y. Optimal information extraction in probabilistic teleportation. Phys Rev A, 2002, 66: 012308

    Article  ADS  Google Scholar 

  78. Hsu L Y. Optimal probabilistic teleportation of an unknown N-level qudit via information extraction. Phys Lett A, 2003, 311: 459–464

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, L., Li, H., Zhou, P. et al. Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N+2)-particle nonmaximally entangled state as the quantum channel. Sci. China Phys. Mech. Astron. 54, 484–490 (2011). https://doi.org/10.1007/s11433-011-4246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4246-8

Keywords