Abstract
An efficient quantum secure direct communication protocol is presented over the amplitude damping channel. The protocol encodes logical bits in two-qubit noiseless states, and so it can function over a quantum channel subjected to collective amplitude damping. The feature of this protocol is that the sender encodes the secret directly on the quantum states, the receiver decodes the secret by performing determinate measurements, and there is no basis mismatch. The transmission’s safety is ensured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel. Moreover, we construct the efficient quantum circuits to implement channel encoding and information encoding by means of primitive operations in quantum computation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195
Bennett C H, Brassadrd G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE Inter-national Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984. 175–179
Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chin Sci Bull, 2008, 53(9): 1310–1314
Gao F, Guo F Z, Wen Q Y, et al. Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci China Ser G-Phys Mech Astron, 2008, 51(12): 1853–1860
Wei D X, Yang X D, Luo J, et al. NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull, 2004, 49(5): 423–426
Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 572–580
Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368
Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
Cai Q Y, Li B W. Improving the capacity of the Bostroem-Felbinger protocol. Phys Rev A, 2004, 69: 054301
Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317
Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21(4): 601–603
Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319
Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501
Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338
Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302
Deng F G, Li X H, Li C Y, et al. Economical quantum secure direct communication network with single photons. Chin Phys, 2007, 16(12): 3553–3559
Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21
Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39: 3855–3863
Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153
Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358: 256–258
Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183
Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys Rev A, 1995, 52: R2493
Steane A M. Error correcting codes in quantum theory. Phys Rev Lett, 1996, 77: 793–797
Wang X B. Quantum key distribution with two-qubit quantum codes. Phys Rev Lett, 2004, 92: 077902
Wang X B. Quantum error-rejection code with spontaneous parametric down-conversion. Phys Rev A, 2004, 69: 022320
Chen Y A, Zhang A N, Zhao Z, et al. Experimental quantum error rejection for quantum communication. Phys Rev Lett, 2006, 96: 220504
Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101
Giulini D, Joos E, Kiefer C, et al. Decoherence and the Appearance of a Classical World in Quantum Theory. Berlin: Springer-Verlag, 1996
Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901
Boileau J C, Gottesman D, Laamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901
Wang X B. Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys Rev A, 2005, 72: 050304R
Zhang Q, Yin J, Chen T Y, et al. Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys Rev A, 2006, 73: 020301
Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Phys A, 2006, 361: 233–238
Souza C E R, Borges C V S, Khoury A Z, et al. Quantum key distribution without a shared reference frame. Phys Rev A, 2008, 77: 032345
Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321
Hughes R J, James D F V, Knill E H, et al. Decoherence bounds on quantum computation with trapped ions. Phys Rev Lett, 1996, 77: 3240–3243
Cirac J I, Pellizzari T, Zoller P. Enforcing coherent evolution in dissipative quantum dynamics. Science, 1996, 273: 1207–1210
van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication. Science, 1998, 279: 205–208
Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
Duan L M, Guo G C. Optimal quantum codes for preventing collective amplitude damping. Phys Rev A, 1998, 58: 3491–3495
Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311
Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25
Deng F G, Zhou P, Li X H, et al. Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168
Cai Q Y. The ping-pong protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801
O’Brien J L, Pryde G J, White A G, et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 2003, 426: 264–267
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800131016), the Natural Science Foundation of Beijing (Grant No. 4072020), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), and the ISN Open Foundation
Rights and permissions
About this article
Cite this article
Qin, S., Wen, Q., Meng, L. et al. Quantum secure direct communication over the collective amplitude damping channel. Sci. China Ser. G-Phys. Mech. Astron. 52, 1208–1212 (2009). https://doi.org/10.1007/s11433-009-0140-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11433-009-0140-z