[go: up one dir, main page]

Skip to main content
Log in

Impact of dust storm on phytoplankton bloom over the Arabian Sea: a case study during March 2012

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dust storms affect the primary productivity of the ocean by providing necessary micronutrients to the surface layer. One such dust storm during March 2012 led to a substantial reduction in visibility and enhancement in aerosol optical depth (AOD) up to ~ 0.8 (AOD increased from 0.1 to 0.9) over the Arabian Sea. We explored the possible effects and mechanisms through which this particular dust storm could impact the ocean’s primary productivity (phytoplankton concentration), using satellite-borne remote sensors and reanalysis model data (2003–2016). The climatological analyses revealed anomalous March 2012 in terms of dust deposition and enhancement in phytoplankton concentration in the month of March during 2003–2016 over this region. The studied dust storm accounts for increase in the daily average surface dust deposition rate from ~ 3 to ~53 mg m−2 day−1, which is followed by a significant enhancement in the chlorophyll-a (Chl_a) concentration (~ 2 to ~9 mg m−3). We show strong association between a dust storm and an event of anomalously high biological production (with a 4-day forward lag) in the Arabian Sea. We suggest that the increase in biological production results from the superposition of two complementary processes (deposition of atmospheric nutrients and deepening of the mixed layer due to dust-induced sea surface temperature cooling) that enhance nutrient availability in the euphotic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alam K, Trautmann T, Blaschke T, Subhan F (2014) Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens Environ 143:216–227

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  CAS  Google Scholar 

  • Alghamdi MA, Almazroui M, Shamy M, Redal MA, Alkhalaf AK, Hussein MA, Khoder MI (2015) Characterization and elemental composition of atmospheric aerosol loads during springtime dust storm in western Saudi Arabia. Aerosol Air Qual Res 15:440–453

    Article  CAS  Google Scholar 

  • Arimoto, R., R. A. Duce, and B.J. Ray (1990), Concentrations, sources and air-sea exchange of trace elements in the atmosphere over the Pacific Ocean, in Riley et al. (eds.). Chem Oceanogr, 10, 107–149

  • Banse K, Sumitra V, Madhupratap M (1996) On the possible causes of the seasonal phytoplankton blooms along the west coast of India. Ind J Marine Sci 25:283–289

    Google Scholar 

  • Banerjee P, Kumar SP (2014) Dust-induced episodic phytoplankton blooms in the Arabian Sea during winter monsoon. J Geophys Res Oceans 119:7123–7138. https://doi.org/10.1002/2014JC010304

    Article  Google Scholar 

  • Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13. https://doi.org/10.1016/j.marchem.2008.09.003

    Article  CAS  Google Scholar 

  • Bali K, Mishra AK, Singh S (2017) Impact of anomalous forest fire on aerosol radiative forcing and snow cover over Himalayan region. Atmos Environ 150:264–275

    Article  CAS  Google Scholar 

  • Barber RT, Marra J, Bidigare RC, Codispoti LA, Halpern D, Johnson Z, Latasa M, Goericke R, Smith SL (2001) Primary productivity and its regulation in the Arabian Sea during 1995. Deep-Sea Res II Top Stud Oceanogr 48:1127–1172

    Article  CAS  Google Scholar 

  • Bosilovich, M. G., R. Lucchesi, and M. Suarez (2016), MERRA-2: File Specification GMAO Office Note No 9 (Version 1.1), 73 pp, available from http://gmao.gsfc.nasa.gov/pubs/officenotes. Accessed 21 March 2016

  • Bradley EF, Coppin PA, Godfrey JS (1991) Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean. J Geophys Res Oceans 96(S01):3375–3389

    Article  Google Scholar 

  • Buchard V, da Silva AM, Randles CA, Colarco P, Ferrare R, Hair J, Hostetler C, Tackett J, Winker D (2016) Evaluation of the surface PM2.5 in version 1 of the NASA MERRA aerosol reanalysis over the United States. Atmos Environ 125:100–111

    Article  CAS  Google Scholar 

  • Buck CS, Landing WM, Resing JA, Lebon GT (2006) Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem Geophys Geosyst 7:Q04M07. https://doi.org/10.1029/2005GC000977

    Article  CAS  Google Scholar 

  • Calil PHR, Doney SC, Yumimoto K, Eguchi K, Takemura T (2011) Episodic upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions. J Geophys Res 116:C06030. https://doi.org/10.1029/2010JC006704

    Article  CAS  Google Scholar 

  • Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511:212–215. https://doi.org/10.1038/nature13482

    Article  CAS  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: An examination of profile data and a profile based climatology. J Geophys Res Oceans 109(C12):C12003

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  • Duce RA, Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnology Oceano 36(8):1715–1726

    Article  CAS  Google Scholar 

  • Evan AT, Foltz GR, Zhang D, Vimont DJ (2011) Influence of African dust on ocean-atmosphere variability in the tropical Atlantic. Nat Geosci 4(11):762–765

    Article  CAS  Google Scholar 

  • Fan SM, Moxim WJ, Levy H II (2006) Aeolian input of bio available iron to the ocean. Geophys Res Lett 33:L07602. https://doi.org/10.1029/2005GL024852

    Article  CAS  Google Scholar 

  • Foltz GR, McPhaden MJ (2008) Impact of Saharan dust on tropical North Atlantic SST. J Clim 21(19):5048–5060

    Article  Google Scholar 

  • Fung IY, Meyn SK, Tegen II, Doney SC, John JG, Bishop JKB (2000) Iron supply and demand in the upper ocean. Glob Biogeochem Cycles 14(2):697–700

    Article  CAS  Google Scholar 

  • Gabric AJ, Cropp R, Ayers GP, McTainsh G, Braddock R (2002) Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean. Geophys Res Lett 29(7):1112. https://doi.org/10.1029/2001GL013545

    Article  Google Scholar 

  • Gallisai R, Peters F, Volpe G, Basart S, Baldasano JM (2014) Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales. PLoS One 9(10):e110762

    Article  CAS  Google Scholar 

  • Gao Y, Xu G, Zhan J, Zhang J, Li W, Lin Q, Chen L, Lin H (2013) Spatial and particle size distributions of atmospheric dissolvable iron in aerosols and its input to the Southern Ocean and coastal East Antarctica. J Geophys Res Atmos 118(12):634–12, 648. https://doi.org/10.1002/2013JD020367

    Article  CAS  Google Scholar 

  • Gao Y, Fan S-M, Sarmiento JL (2003) Aeolian iron input to the ocean through precipitation scavenging: a modeling perspective and its implication for natural iron fertilization in the ocean. J Geophys Res 108(D7):4221. https://doi.org/10.1029/2002JD002420

    Article  CAS  Google Scholar 

  • Gautam R, Liu Z, Singh RP, Hsu NC (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813. https://doi.org/10.1029/2008GL036967

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth-Sci Rev 56:179–204

    Article  CAS  Google Scholar 

  • Guieu, C., Aumont, O., Paytan, A., Bopp, L., Law, C. S., Mahowald, N., ... & Wagener, T. (2014). The significance of the episodic nature of atmospheric deposition to low nutrient low chlorophyll regions. Glob Biogeochem Cycles, 28(11), 1179–1198

  • Han Y, Zhao T, Song L, Fang X, Yin Y, Deng Z, Wang S, Fan S (2011) A linkage between Asian dust, dissolved iron and marine export production in the deep ocean. Atmos Environ 45:4291–4298

    Article  CAS  Google Scholar 

  • Hand JL, Mahowald NM, Chen Y, Siefert RL, Luo C, Subramaniam A, Fung I (2004) Estimates of atmospheric processed soluble iron from observations and a global mineral aerosol model: biogeochemical implications. J Geophys Res 109:D17205. https://doi.org/10.1029/2004JD004574

    Article  CAS  Google Scholar 

  • Hofmann M, Worm B, Rahmstorf S, Schellnhuber HJ (2011) Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ Res Lett 6(3):034035

    Article  CAS  Google Scholar 

  • Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564

    Article  CAS  Google Scholar 

  • Jayakumar D, Naqvi SW, Narvekar P, George M (2001) Methane in coastal and offshore waters of the Arabian Sea. Mar Chem 74:1–13. https://doi.org/10.1016/S0304-4203(00)00089-X

    Article  CAS  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Article  CAS  Google Scholar 

  • Johnson R, Strutton PG, Wright SW, McMinn A, Meiners KM (2013) Three improved satellite chlorophyll algorithms for the Southern Ocean. J Geophy Res Oceans 118(7):3694–3703

    Article  CAS  Google Scholar 

  • Journet E, Desboeufs KV, Caquineau S, Colin JL (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35:L07805. https://doi.org/10.1029/2007GL031589

    Article  CAS  Google Scholar 

  • Keerthi, M. G., Lengaigne, M., Lévy, M., Vialard, J., Parvathi, V., de Boyer Montégut, C., ... & Muraleedharan, P. M. (2017). Physical control of interannual variations of the winter chlorophyll bloom in the northern Arabian Sea. Biogeosciences, 14(15), 3615, 3632

  • PrasannaKumar S, Roshin RP, Narvekar J, Kumar PKD, Vivekanandan E (2010) What drives the increased phytoplankton biomass in the Arabian Sea? Curr Sci 99:101–106

    Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Leon JF, Mahowald NM (2008) Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. J Geophys Res 113:D14218. https://doi.org/10.1029/2007JD009484

    Article  Google Scholar 

  • Lau KM, Kim KM (2007) Cooling of the Atlantic by Saharan dust. Geophys Res Lett 34(23)

  • Lawrence ZD, Manney GL, Minschwaner K, Santee ML, Lambert A (2015) Comparisons of polar processing diagnostics from 34 years of the ERA-interim and MERRA reanalyses. Atmos Chem Phys 15:3873–3892

    Article  CAS  Google Scholar 

  • Le’on J-F, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30(6):1309. https://doi.org/10.1029/2002GL016690

    Article  Google Scholar 

  • Lee CM, Jones BH, Brink KH, Fischer AS (2000) The upper-ocean response to monsoonal forcing in the Arabian Sea: seasonal and spatial variability. Deep-Sea Res II Top Stud Oceanogr 47:1177–1226

    Article  Google Scholar 

  • Lee Z, Du K, Arnone R, Liew A, Penta B (2005) Penetration of solar radiation in the upper ocean: a numerical model for oceanic and coastal waters. J Geophys Res 110:C09019

    Google Scholar 

  • Lee Z, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J Geophys Res 112:C03009

    Google Scholar 

  • Lee Z, Arnone R, Hu C, Werdell PJ, Lubac B (2010) Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Appl Opt 49:369–381

    Article  Google Scholar 

  • Lévy M, Shankar D, André JM, Shenoi SSC, Durand F, de Boyer Montégut C (2007) Basin‐wide seasonal evolution of the Indian Ocean's phytoplankton blooms. J Geophys Res Oceans 112(C12)

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10(21):10399–10420

    Article  CAS  Google Scholar 

  • Li F, Ramanathan V (2002) Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J Geophys Res 107:4284. https://doi.org/10.1029/2001JD000949

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  CAS  Google Scholar 

  • Madhupratap M, Prasanna KS, Bhattathiri PMA, Dileep KM, Raghukumar S, Nair KKC, Ramaiah N (1996) Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384:549–552

    Article  CAS  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:GB4025. https://doi.org/10.1029/2004GB002402

    Article  CAS  Google Scholar 

  • McCreary JP, Murtugudde R, Vialard J, Vinayachandran PN, Wiggert JD, Hood RR, Shankar D, Shetye S (2009) Biophysical processes in the Indian Ocean. Indian Ocean biogeochemical processes and ecological variability. Geophys Monogr Ser 185:9–32

  • Middleton NJ (1986) A geography of dust storms in Southwest Asia. Int J Climatol 6:183–196

    Article  Google Scholar 

  • Moore JK, Braucher O (2008) Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosci. 5:631–656

    Article  CAS  Google Scholar 

  • Morel A, Claustre H, Antoine D, Gentili B (2007) Natural variability of bio-optical properties in case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosciences 4:913–925

    Article  CAS  Google Scholar 

  • Najafi MS, Khoshakhllagh F, Zamanzadeh SM, Shirazi MH, Samadi M, Hajikhani S (2014) Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab J Geosci 7(12):5367–5381

    Article  CAS  Google Scholar 

  • Naqvi SWA, Moffett JW, Gauns MU, Narvekar PV, Pratihary AK, Naik H, Shenoy DM, Jayakumar DA, Goepfert TJ, Patra PK, Al-Azri A (2010) The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon. Biogeosciences 7:2091–2100

    Article  CAS  Google Scholar 

  • O’Reilly J E, Maritorena S, Siegel DA, O’Brien MC, Toole D, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF, and Hooker SB (2000), Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4. SeaWiFSpostlaunch calibration and validation analyses, Part, 3, pp.9–23

  • Patra PK, Kumar MD, Mahowald N, Sharma VVSS (2007) Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. J Geophys Res 112:C05029. https://doi.org/10.1029/2006JC003885

    Article  CAS  Google Scholar 

  • Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496

    Article  Google Scholar 

  • Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620

    Article  CAS  Google Scholar 

  • Poll WH, Kulk G, Timmermans KR, Brussaard CPD, Woerd HJ, Kehoe MJ, Mojica KDA, Visser RJW, Rozema PD, Buma AGJ (2013) Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10:4227–4240

    Article  CAS  Google Scholar 

  • Prakash PJ, Stenchikov G, Kalenderski S, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15(199–222):2015. https://doi.org/10.5194/acp-15-199-

    Article  Google Scholar 

  • Prakash PJ, Stenchikov G, Tao W, Yapici T, Warsama B, Engelbrecht JP (2016) Arabian Red Sea coastal soils as potential mineral dust sources. Atmos Chem Phys 16(18):11991–12004

    Article  CAS  Google Scholar 

  • Prakash S, Ramesh R (2007) Is the Arabian Sea getting more productive? Curr Sci 92(5):667–670

    CAS  Google Scholar 

  • Prospero J, Nees RT, Uematsu M (1987) Deposition rate of particulate and dissolved aluminium derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14 723–14 731

    Article  CAS  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 TOMS absorbing aerosol product. Rev Geophys 40(1):1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Ramaswamy V, Muraleedharan PM, Babu CP (2017) Mid-troposphere transport of Middle-East dust over the Arabian Sea and its effect on rainwater composition and sensitive ecosystems over India. Sci Rep 7(1):13676

    Article  CAS  Google Scholar 

  • Remer LA, Tanre D, Kaufman YJ, Ichoku C, Mattoo S, Levy R, Chu DA, Holben B, Dubovik O, Smirnov A, Martins JV (2002) Validation of MODIS aerosol retrieval over ocean. Geophys Res Lett 29(12):8008

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Sarthou G, Baker AR, Blain S, Achterberg EP, Boye M, Bowie AR, Croot P, Laan P, Baar HJW, Jickells TD, Worsfold PJ (2003) Atmospheric iron deposition and sea-surface dissolved iron concentrations in the east Atlantic Ocean. Deep-Sea Res I Oceanogr Res Pap 50:1339–1352. https://doi.org/10.1016/S0967-0637(03)00126-2

    Article  CAS  Google Scholar 

  • Shang S, Dong Q, Lee Z, Li Y, Xie Y, Behrenfeld M (2011) MODIS observed phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis. Biogeosciences. 8:841–850. https://doi.org/10.5194/bg-8-841-2011

    Article  Google Scholar 

  • Srinivas B, Sarin MM, Kumar A (2011) Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochem 110(1–3):257–268. https://doi.org/10.1007/s10533-011-9680-1

  • Srivastava AK, Soni VK, Singh S, Kanawade VP, Singh N, Tiwari S, Attri SD (2014) An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study. Sci Total Environ 493:526–534

    Article  CAS  Google Scholar 

  • Singh S, Beegum SN (2013) Direct radiative effects of an unseasonal dust storm at a western Indo Gangetic Plain station Delhi in ultraviolet, shortwave, and longwave regions. Geophys Res Lett 40:2444–2449. https://doi.org/10.1002/grl.50496

    Article  Google Scholar 

  • Singh RP, Prasad AK, Kayetha VK, Kafatos M (2008) Enhancement of oceanic parameters associated with dust storms using satellite data. J Geophys Res 113:C11008. https://doi.org/10.1029/2008JC004815

    Article  Google Scholar 

  • Smitha A, Joseph KA, Jayaram C, Balchand AN (2014) Upwelling in the southeastern Arabian Sea as evidenced by Ekman mass transport using wind observations from OCEANSAT–II Scatterometer. Ind J Geo-Mar Sci 43(1):111–116

    Google Scholar 

  • Sunda WG, Hunstsman SA (1997) Interrelated influence of iron; light cell size on marine phytoplankton growth. Nature 390:389–392

    Article  CAS  Google Scholar 

  • Takahashi Y, Higashi M, Furukawa T, Mitsunobu S (2011) Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmos Chem Phys 11:11237–11252. https://doi.org/10.5194/acp-11-11237-2011

    Article  CAS  Google Scholar 

  • Tan S-C, Shi G-Y, Shi J-H, Gao H-W, Yao X (2011) Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008. J Geophys Res 116:G02029. https://doi.org/10.1029/2010JG001456

    Article  CAS  Google Scholar 

  • Tang D, Kawamura H, Luis AJ (2002) Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sens Environ 81:82–89

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Uno I, Harada K, Satake S, Hara Y, Wang Z (2005) Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model. J Meteorol Soc Jpn 83A:219–239

    Article  Google Scholar 

  • Volpe G, Banzon VF, Evans RH, Santoleri R, Mariano AJ, Sciarra R (2009) Satellite observations of the impact of dust in a low-nutrient, lowchlorophyll region: fertilization or artifact? Glob Biogeochem Cycles 23:1–14. https://doi.org/10.1029/2008GB003216

    Article  CAS  Google Scholar 

  • Vahtera E, Laanemets J, Pavelson J, Huttunen M, Kononen K (2005) Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J Mar Syst 58:67–82. https://doi.org/10.1016/j.jmarsys.2005.07.001

    Article  Google Scholar 

  • Vincent J, Laurent B, Losno R, Bon Nguyen E, Roullet P, Sauvage S et al (2016) Variability of mineral dust deposition in the western Mediterranean basin and south-east of France. Atmos Chem Phys 16(14):8749–8766

    Article  CAS  Google Scholar 

  • Wang SH, Hsu C, Tsay SC, Lin NH, Sayer AM, Huang SJ, William KML (2012) Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? Geophys Res Lett 39:L05811. https://doi.org/10.1029/2011GL050415

    Article  CAS  Google Scholar 

  • Wells ML (2003) The level of iron enrichment required to initiate diatom blooms in HNLC waters. Mar Chem 82:101–114

    Article  CAS  Google Scholar 

  • Wiggert JD, Hood RR, Banse K, Kindle JC (2005) Monsoon-driven biogeochemical processes in the Arabian Sea. Prog Oceanogr 65(2–4):176–213

  • Zhang GJ, McPhaden MJ (1995) The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J Clim 8(3):589–605

  • Zhu A, Ramanathan V, Li F, Kim D (2007) Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J Geophys Res 112:D16208. https://doi.org/10.1029/2007JD008427

Download references

Acknowledgments

We acknowledge the National Aeronautics and Space Administration (NASA) and Giovanni (giovanni.sci.gsfc.nasa.gov) for MODIS and MERRA-2 datasets used in this research. A part of this work was sponsored by ISRO-GBP (Indian Space Research Organisation—Geosphere Biosphere Programme) under ARFI (Aerosol Radiative Forcing over India) project. We are thankful to Director, NPL for his encouragement and support. We are grateful to the two anonymous referees for their valuable suggestions in improving this paper.

Funding

This study was financially supported by the Department of Science and Technology, Government of India as an INSPIRE Faculty (DST/INSPIRE/04/2015/003253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachchidanand Singh.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali, K., Mishra, A.K., Singh, S. et al. Impact of dust storm on phytoplankton bloom over the Arabian Sea: a case study during March 2012. Environ Sci Pollut Res 26, 11940–11950 (2019). https://doi.org/10.1007/s11356-019-04602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04602-7

Keywords