[go: up one dir, main page]

Skip to main content
Log in

Evolution of Relative Drifts in the Expanding Solar Wind: Helios Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Ion velocity distribution functions (VDFs) measured in-situ in the solar wind show often large deviations from a simple Maxwellian distribution. Even a main part of the proton VDF (proton core) situated around the global maximum maintains a bi-Maxwellian character. Moreover, skewness, related to a non-thermal tail or proton beam, is often observed. In addition to these two proton populations, various heavy ion species are present and their VDFs also exhibit the mentioned non-thermal features. In the proton core frame, minor components including ion beams drift along the interplanetary magnetic field and their average differential velocities decrease with an increasing distance from the Sun. We present reprocessing of the VDFs measured by the Helios spacecraft with a motivation to discuss evolutions of relative drifts between three dominant components – the proton core, proton beam, and \(\upalpha \)-particle core at different distances from the Sun. Our processing is based on assumptions that partial VDFs of all these components can be approximated by a bi-Maxwellian distribution. We compare results of this novel procedure with those from previous computation results and introduce basic characteristics of the VDF components in both slow and fast solar wind streams. Finally, we investigate the correlated variations of the velocity ratios on the ion components and magnetic field orientations occurring independently on the radial distance from the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Araneda, J.A., Marsch, E., Viñas, A.F.: 2008, Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. Phys. Rev. Lett. 100, 125003. DOI .

    Article  ADS  Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Gosling, J.T.: 1977, Evidence for a structure-free state at high solar wind speeds. J. Geophys. Res. 82(10), 1487. DOI .

    Article  ADS  Google Scholar 

  • Berger, L., Wimmer-Schweingruber, R.F., Gloeckler, G.: 2011, Systematic measurements of ion–proton differential streaming in the solar wind. Phys. Rev. Lett. 106, 151103. DOI .

    Article  ADS  Google Scholar 

  • Daughton, W., Gary, S.P., Winske, D.: 1999, Electromagnetic proton/proton instabilities in the solar wind: simulations. J. Geophys. Res. 104(A3), 4657. DOI .

    Article  ADS  Google Scholar 

  • Ďurovcová, T., Němeček, Z., Šafránková, J.: 2019, Evolution of the \(\upalpha \)–proton differential motion across stream interaction regions. Astrophys. J. 873(1), 24. DOI .

    Article  ADS  Google Scholar 

  • Ebert, R.W., McComas, D.J., Elliott, H.A., Forsyth, R.J., Gosling, J.T.: 2009, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J. Geophys. Res. 114(A1), 109. DOI .

    Article  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D.: 1973, Double ion streams in the solar wind. J. Geophys. Res. 78(13), 2017. DOI .

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D.: 1974, Interpenetrating solar wind streams. Rev. Geophys. 12(4), 715. DOI .

    Article  ADS  Google Scholar 

  • Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge, ISBN 9780511551512. DOI .

    Book  Google Scholar 

  • Hellinger, P., Trávníček, P.M.: 2014, Solar wind protons at 1 AU: trends and bounds, constraints and correlations. Astrophys. J. Lett. 784(1), L15. DOI .

    Article  ADS  Google Scholar 

  • Hellinger, P., Matteini, L., Štverák, Š., Trávníček, P.M., Marsch, E.: 2011, Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J. Geophys. Res. 116(A9), 105. DOI .

    Article  Google Scholar 

  • Hellinger, P., Trávníček, P.M., Štverák, Š., Matteini, L., Velli, M.: 2013, Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res. 118(4), 1351. DOI .

    Article  Google Scholar 

  • Kasper, J.C., Stevens, M.L., Lazarus, A.J., Steinberg, J.T., Ogilvie, K.W.: 2007, Solar wind helium abundance as a function of speed and heliographic latitude: variation through a solar cycle. Astrophys. J. 660(1), 901. DOI .

    Article  ADS  Google Scholar 

  • Landi, S., Hellinger, P., Velli, M.: 2006, Heliospheric magnetic field polarity inversions driven by radial velocity field structures. Geophys. Res. Lett. 33(14), L14101. DOI .

    Article  ADS  Google Scholar 

  • Leubner, M.P.: 2004, Core-halo distribution functions: a natural equilibrium state in generalized thermostatistics. Astrophys. J. 604(1), 469. DOI .

    Article  ADS  Google Scholar 

  • Livi, S., Marsch, E.: 1987, Generation of solar wind proton tails and double beams by coulomb collisions. J. Geophys. Res. 92(A7), 7255. DOI .

    Article  ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Astronomical Data Analysis Software and Systems (ADASS XVIII), Quebec, Canada, ASP Conference Series 411, 251.

    Google Scholar 

  • Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3(1), 1. DOI .

    Article  ADS  Google Scholar 

  • Marsch, E.: 2012, Helios: evolution of distribution functions 0.3 – 1 AU. Space Sci. Rev. 172(1), 23. DOI .

    Article  ADS  Google Scholar 

  • Marsch, E., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R., Neubauer, F.M.: 1982a, Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87(A1), 35. DOI .

    Article  ADS  Google Scholar 

  • Marsch, E., Mühlhäuser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp, W., Neubauer, F.M.: 1982b, Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87(A1), 52. DOI .

    Article  ADS  Google Scholar 

  • Matteini, L., Hellinger, P., Goldstein, B.E., Landi, S., Velli, M., Neugebauer, M.: 2013, Signatures of kinetic instabilities in the solar wind. J. Geophys. Res. 118(6), 2771. DOI .

    Article  Google Scholar 

  • Matteini, L., Horbury, T.S., Neugebauer, M., Goldstein, B.E.: 2014, Dependence of solar wind speed on the local magnetic field orientation: role of Alfvénic fluctuations. Geophys. Res. Lett. 41(2), 259. DOI .

    Article  ADS  Google Scholar 

  • Musmann, G., Neubauer, F.M., Maier, A., Lammers, E.: 1975, The foerstersonden magnetic field experiment /E 2/. Raumfahrtforschung 19, 232.

    ADS  Google Scholar 

  • Neugebauer, M., Goldstein, B.E.: 2013, Double-proton beams and magnetic switchbacks in the solar wind. AIP Conf. Proc. 1539(1), 46. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Goldstein, B.E., Smith, E.J., Feldman, W.C.: 1996, Ulysses observations of differential alpha-proton streaming in the solar wind. J. Geophys. Res. 101(A8), 17047. DOI .

    Article  ADS  Google Scholar 

  • Rosenbauer, H., Schwenn, R., Miggenrieder, H., Meyer, B., Gründwaldt, H., Mühlhäuser, K.-H., Pellkofer, H., Wolfe, J.H.: 1981. Helios E1 (plasma) instrument technical, document. DOI .

  • Salem, C.: 2018, HELIOS data archive, the Helios 1 & 2 data revisited. http://helios-data.ssl.berkeley.edu/ .

  • Stansby, D., Horbury, T.S.: 2018, Number density structures in the inner heliosphere. Astron. Astrophys. 613(A62), A62. DOI .

    Article  ADS  Google Scholar 

  • Stansby, D., Salem, C., Matteini, L., Horbury, T.: 2018, A new inner heliosphere proton parameter dataset from the Helios mission. Solar Phys. 293(11), 155. DOI .

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E., Qin, Z.-R.: 2004, Dependence of the proton beam drift velocity on the proton core plasma beta in the solar wind. J. Geophys. Res. 109(A5), A05101. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Hellinger and HELIOS Data Archive for providing the ion VDFs and magnetic field data measured by Helios 2. The present work was supported partly by the Grant Agency of the Charles University under the project number 1484217 and partly by the Czech Science Foundation under the projects 16-04956S/19-18993S. T.D. is the City of Ostrava scholarship holder. We would also like to thank professor Vitek for his continuous a support and valuable insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Ďurovcová.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter

Guest Editors: Giovanni Lapenta and Andrei Zhukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ďurovcová, T., Šafránková, J. & Němeček, Z. Evolution of Relative Drifts in the Expanding Solar Wind: Helios Observations. Sol Phys 294, 97 (2019). https://doi.org/10.1007/s11207-019-1490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1490-y

Keywords

Navigation