Abstract
In this paper, we investigate generalized remote information concentration as the reverse process of ancilla-free phase-covariant telecloning (AFPCT) which is different from the reverse process of optimal universal telecloning. It is shown that the quantum information via \(1\rightarrow 2\) AEPCT procedure can be remotely concentrated back to a single qubit with a certain probability by utilizing (non-)maximally entangled \(W\) states as quantum channels. Our protocols are the generalization of Wang’s scheme (Open J Microphys 3:18–21. doi:10.4236/ojm.2013.31004, 2013). And von Neumann measure and positive operator-valued measurement are performed in the maximal and non-maximal cases respectively. Relatively the former, the dimension of measurement space in the latter is greatly reduced. It makes the physical realization easier and suitable.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)
Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)
Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)
Bužek, V., Hillery, M.: Crossed-field hydrogen atom and the three-body Sun-Earth-Moon problem. Phys. Rev. A 54, 1844–1888 (1996)
Bruß, D., Calsamiglia, J., Lütkenhaus, N.: Quantum cloning and distributed measurements. Phys. Rev. A 63, 042308 (2001)
Galvao, E.F., Hardy, L.: Cloning and quantum computation. Phys. Rev. A 62, 022301 (2000)
Ricci, M., Sciarrino, F., Cerf, N.J., Filip, R., et al.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)
Lamoureux, L.P., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis. Phys. Rev. A 73, 032304 (2006)
Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)
Murao, M., Plenio, M.B., Vedral, V.: Quantum-information distribution via entanglement. Phys. Rev. A 61, 032311 (2000)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Ghiu, I.: Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the “many-to-many” communication protocol. Phys. Rev. A 67, 012323 (2003)
Wang, X.W., Yang, G.J.: Probabilistic ancilla-free phase-covariant telecloning of qudits with the optimal fidelity. Phys. Rev. A 79, 064306 (2009)
Wang, X.W., Su, Y.H., Yang, G.J.: One-to-many economical phase-covariant cloning and telecloning of qudits. Chin. Phys. Lett. 27(10), 100303 (2010)
Ghiu, I., Karlsson, A.: Broadcasting of entanglement at a distance using linear optics and telecloning of entanglement. Phys. Rev. A 72, 032331 (2005)
Chen, L., Chen, Y.X.: Asymmetric quantum tele-cloning of multiqubit states. Quan. Inf. Comput. 7, 716–729 (2007)
Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)
Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352–356 (2001)
Yu, Y.F., Feng, J., Zhan, M.S.: Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys. Rev. A 68, 024303 (2003)
Chen, Y.H., Yu, Y.F., Zhang, Z.M.: Entangled states used in remote information concentration and their properties. Chin. Phys. Lett. 23, 3158–3162 (2006)
Chen, Y.H., Zhang, D.Y., Gao, F., Zhan, X.G.: Remote information concentration via a four-particle cluster state. Chin. Phys. Lett. 26, 090304 (2009)
Augusiak, R., Horodecki, P.: Generalized Smolin states and their properties. Phys. Rev. A 73, 012318 (2006)
Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310 (2011)
Hsu, L.Y.: Remote one-qubit information concentration and decoding of operator quantum error-correction codes. Phys. Rev. A 76, 032311 (2007)
Wang, X.W., Tang, S.Q.: Remote quantum-information concentration: reversal of ancilla-free phase-covariant telecloning. Open J. Microphys. 3, 18–21 (2013). doi:10.4236/ojm.2013.31004
Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)
Dür, W., et al.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Bennet, C.H., et al.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Ekert, A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–7801 (2010)
Vedral, V., Plenio, M.B.: Progress in quantum electronics. Prog. Quantum Electron. 22, 1–39 (1998)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)
Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822–829 (1998)
Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)
Luo, M.X., Peng, J.Y., Mo, Z.W.: Joint remote preparation of an arbitrary five-qubit brown state. Int. J. Theor. Phys. 52, 644–653 (2013)
Wang, Z., Liu, Y.M., Wang, D., Zhang, Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322–326 (2007)
Zha, X.W.: The expansion of orthogonal complete set and transformation operator in teleportation. Chin. Phys. Soc. 56, 1875–1880 (2007)
Gordon, G., Rigolin, G.: Eneralized quantum state sharing. Phys. Rev. A 73, 062316 (2006)
Cu, Y.J.: Deterministic exact teleportation via two partially entangled pairs of particles. Opt. Commun. 259(1), 385–388 (2006)
Wang, Z.Y., Wang, D., Liu, J., Shi, H.H.: Probabilistic teleportation of an arbitrary unknown two-qubit state via positive operator-valued measure and two non-maximally entangled states. Commun. Theor. Phys. 46(5), 859–862 (2006)
Yan, F.L., Ding, H.W.: Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin. Phys. Lett. 23(1), 17–20 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peng, JY., Bai, Mq. & Mo, ZW. Remote information concentration via \(W\) state: reverse of ancilla-free phase-covariant telecloning. Quantum Inf Process 12, 3511–3525 (2013). https://doi.org/10.1007/s11128-013-0613-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0613-x