[go: up one dir, main page]

Skip to main content
Log in

Complex resistivity tomography (CRT) for fungus detection on standing oak trees

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Complex resistivity tomography is presented as an extension of electrical impedance tomography for non-destructive structural tree investigation. Results of laboratory measurements with different frequencies suggest measuring the resistivity and in addition the phase shift at about 0.1 Hz. The measured data are processed using a finite-element-based inversion algorithm, which uses triangular meshes and is thus able to consider any tree shape. We apply the technique to three different oak trees with the aim of fungi detection. Measurements of a healthy tree both in summer and in winter show a ring-shaped structure and indicate a strong seasonal dependence, particularly for the resistivity magnitude. Tomograms on fungi-infected trees clearly show disturbances at the infections at different heights compared with healthy trees. A comparison with tree section photographs shows promising agreement. Moreover, a comparison with measurements at oak-wood samples in the laboratory shows at least partly quantitative coincidence. To conclude, the phase image provides additional information and helps to differentiate disturbances in the cell structure from pure moisture changes. Therefore, the method has the potential to deliver useful additional information, when carried out during routine tree assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min 146:54–62

    Google Scholar 

  • Argus Electronic (2005) Handbuch zu Picus Calliper. Argus Electronic, http://www.argus-electronic.de

  • Beard LP, Hohmann GW, Tripp AC (1996) Fast resistivity/IP inversion using a low-contrast approximation. Geophysics 61:169–179

    Article  Google Scholar 

  • Bieker D, Rust S (2010) Electric resistivity tomography shows radial variation of electrolytes in Quercus robur. Can J For Res 40:1189–1193

    Article  CAS  Google Scholar 

  • Börner F, Schopper J, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398

    Article  Google Scholar 

  • Du Q (1991) Einfluss holzartspezifischer Eigenschaften auf die elektrische Leitfähigkeit wichtiger Handelshölzer: PhD thesis, Universität Hamburg

  • Fengel D, Wegener G (1984)Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Göcke L, Rust S, Weihs U, Günther T, Rücker C (2008) Combining sonic and electrical impedance tomography for the nondestructive testing of trees: western Arborist, Spring, Berlin, p 11

  • Günther T, Rücker C, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—part II: inversion. Geophys J Int 166:506–517

    Article  Google Scholar 

  • Guyot A, Ostergaard KT, Lenkopane M, Fan J, Lockington DA (2013) Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology. doi:10.1093/treephys/tps128

  • Hagrey S (2006) Electrical resistivity imaging of tree trunks: Near Surface Geophysics 179–187

  • Hagrey S (2007) Geophysical imaging of root-zone, trunk and moisture heterogeneity. J Exp Bot 58:839–854

    Article  Google Scholar 

  • Hanskötter B (2003) Diagnose fakultativer Farbkerne an stehender Rotbuche (Fagus sylvatica L.) mittels elektrischer Widerstandstomographie: PhD thesis, Georg-Augst-Universität Göttingen, Germany, Cuvillier Verlag Göttingen

  • Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107

    Article  Google Scholar 

  • Koestel J, Kemna A, Javaux M, Binley A, Vereecken H (2008) Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour Res 44:W12411

    Article  Google Scholar 

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe, vol 2. Springer, Berlin

    Google Scholar 

  • Kucera L (1986) Kernspintomographie und elektrische Widerstandsmessung als Diagnosemethode der Vitalität erkrankter Bäume. Schweiz Z Forstwes 137:673–690

    Google Scholar 

  • Lesmes D, Frye K (2001) Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. J Geophys Res 106:4079–4090

    Article  CAS  Google Scholar 

  • Marshall D, Madden T (1959) Induced polarisation, a study of its causes. Geophysics 24:790–816

    Article  Google Scholar 

  • Martin T (2009) Anwendung des komplexen elektrischen Widerstandsverfahrens an Eichen (Quercus spp.): PhD thesis, Technische Universität Clausthal, Germany

  • Martin T (2012) Complex resistivity measurements on oak. Eur J Wood Wood Prod 70(1):45–53. doi:10.1007/s00107-010-0493-z

    Article  Google Scholar 

  • Nicolotti G, Socco L, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. J Aboric 29:66–78

    Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-Echterdingen

    Google Scholar 

  • Oldenborger GA, Routh PS, Knoll MD (2005) Sensitivity of electrical resistivity tomography data to electrode position errors: Geophys. J Int 163:1–9

    Google Scholar 

  • Piirto D, Wilcox W (1978) Critical evaluation of the pulsed-current resistance meter for detection of decay in wood. For Prod J 28:52–57

    Google Scholar 

  • Radic T (2008) Instrumentelle und auswertemethodische Arbeiten zur Wechselstromgeoelektrik: PhD thesis, Technische Universität Berlin, Germany

  • Rücker C, Günther T, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—part I: modeling. Geophys J Int 166:495–505

    Article  Google Scholar 

  • Rust S, Franz S, Minke M, Schumann I, Roloff A (2002) Schalltomographie zur Erkennung von Fäule und Höhlungen an stehenden Bäumen: Stadt+Grün, pp 50–52

  • Schleifer N, Weller A, Schneider S, Junge A (2002) Investigation of a bronze age plankway by spectral induced polarization. Archaeol Prospect 9:243–253

    Article  Google Scholar 

  • Schön J (2004) Physical properties of rocks—fundamentals and principles of petrophysics, Vol 18. Elsevier, Amsterdam

    Google Scholar 

  • Schwarze F, Engels J, Mattheck C (1999) Holzzersetzende Pilze in Bäumen. Rombach-Verlag, Freiburg

    Google Scholar 

  • Scott J, Barker R (2003) Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy. Geophys Res Lett 30:1450

    Article  Google Scholar 

  • Skaar C (1988) Wood–water relations. Springer, Berlin

    Book  Google Scholar 

  • Slater L, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88

    Article  Google Scholar 

  • Tattar T, Shigo A, Chase T (1972) Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees. Can J For Res 2:236–243

    Article  CAS  Google Scholar 

  • Tiitta M, Kainulainen P, Harju A, Venlinen M, Manninen A-M, Vuorinen M, Viitanen H (2003) Comparing the effect of chemical and physical properties on complex electrical impedance of scots pine wood. Holzforschung 57:433–439

    Article  CAS  Google Scholar 

  • Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff, Vol 2. Carl-Hanser-Verlag, Munich

    Google Scholar 

  • Wagenführ R (1999) Anatomie des Holzes. DRW-Verlag, Leinfelden-Echterdingen

    Google Scholar 

  • Waxman M, Smits L (1968) Electrical conductivities in oil-bearing shaly sands. Soc Petrol Eng J:107–122

    Google Scholar 

  • Weihs U, Dubbel V, Krummheuer F, Just A (1999) Die elektrische Widerstandstomographie. Forst und Holz 54:166–170

    Google Scholar 

  • Weller A, Nordsiek S, Debschütz W (2010a) Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization. Geophysics 75:E215–E226

    Article  Google Scholar 

  • Weller A, Slater L, Nordsiek S, Ntarlagiannis D (2010b) On the estimation of specific surface per unit pore volume from induced polarisation: a robust empirical relation fits multiple datasets. Geophysics 75:WA105–WA112

    Article  Google Scholar 

  • Zanetti C, Weller A, Vennetier M, Meriaux P (2011) Detection of buried tree root samples by using geoelectric measurements: a laboratory experiment. Plant Soil 339:273–283

    Article  CAS  Google Scholar 

  • Zürcher E (1988) Diagnosemethoden des Gesundheits- und Vitalitätszustandes der Bäume. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 133(1):25–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Martin.

Additional information

Communicated by G. Kändler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, T., Günther, T. Complex resistivity tomography (CRT) for fungus detection on standing oak trees. Eur J Forest Res 132, 765–776 (2013). https://doi.org/10.1007/s10342-013-0711-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0711-4

Keywords

Navigation