Abstract
Secondary iron minerals associated with acid mine drainage (AMD) such as copiapite, jarosite, schwertmannite, goethite, ferrihydrite, and hematite can be generated from pyrite oxidation. This study was an effort to determine the AMD potential of the Darrehzar mine, a porphyry copper mine in the Kerman Cenozoic magmatic arc, using remote sensing and field data. The spectral angle mapper method was applied on Sentinel 2a images to identify AMD minerals and classify the study area. The produced map was verified by field surveys and laboratory analysis of rocks and sediments as well as pH and electrical conductivity measurements of water samples. Jarosite–clay group minerals were detected in the mine pit and in an active waste dump, and jarosite–goethite and goethite–hematite group minerals were identified in inactive waste dumps. Moreover, acidic water was observed in the pit, while the neutral water was where it arrives and discharges from the mine.
Zusammenfassung
Sekundäre Eisenminerale, die an saure Grubenwässer (AMD) gebunden sind, wie z.B. Copiapit, Jarosit, Schwertmannit, Goethit, Ferrihydrit und Hämatit, können durch Pyritoxidation gebildet werden. Diese Studie verfolgte das Ziel, mittels Fernerkundung und Felddaten das Auftreten von sauren Grubenwässern in der Darrehzar Mine, einer Porphyrkupfermine im Känozoischen Kerman Bogen, zu bestimmen. Die Spektralwinkelmethode wurde auf Sentinel-2a-Bilder angewandt, um AMD-Minerale zu identifizieren und das Untersuchungsgebiet zu klassifizieren. Die entstandene Karte wurde durch Felddaten, Laboranalysen von Gesteinen und Sedimenten sowie pH-Werte und elektrische Leitfähigkeiten von Wasserproben verifiziert. Im Tagebau und in der radioaktiven Abraumhalde wurden Jarosit-Tonminerale und im nichtradioaktiven Abraum wurden Minerale der Jarosit-Goethit-Gruppe und der Goethit-Hämatit-Gruppe gefunden. Zudem wurde saures Grubenwasser im Tagebau beobachtet, während aus der Grube neutrals Wasser strömt.
Resumen
Los minerales de hierro secundarios asociados con el drenaje ácido de mina (DAM) como copiapita, jarosita, schwertmannita, goetita, ferrihidrita y hematita pueden generarse a partir de la oxidación de pirita. Este estudio fue un esfuerzo para determinar el potencial de generación de AMD de la mina Darrehzar, una mina de pórfido de cobre en el arco magmático Kerman Cenozoico, utilizando sensores remotos y datos de campo. El método del ángulo espectral se aplicó en las imágenes del Sentinel 2a para identificar los minerales de AMD y clasificar el área de estudio. El mapa producido se verificó mediante estudios de campo y análisis de laboratorio de rocas y sedimentos, así como mediciones de pH y conductividad eléctrica de muestras de agua. Los minerales del grupo de jarosita-arcilla se detectaron en el pozo de la mina y en un vertedero activo de desechos; los minerales del grupo de jarosita-goethita y goethita-hematita se identificaron en los vertederos inactivos de desechos. Además, se observó agua ácida en el hoyo de la mina mientras que el agua neutra estaba donde llegaba y se descargaba de la mina.
抽象
与酸性矿山废水(AMD)相关的叶绿矾、黄钾铁矾、施氏矿、针铁矿、水铁矿、赤铁矿等次生铁矿物由黄铁矿氧化而成。利用遥感及野外资料研究了Kerman新生代岩浆弧Darrehzar斑岩铜矿的产酸潜力。在哨兵(Sentinel) 2a图像上,应用光谱角度映射法(spectral angle mapper method) 识别产酸矿物,划分产酸类型分区。利用野外调查、岩矿室内测试分析和水样的pH值、电导率测试等数据验证了产酸类型分区成果图。矿坑和生产矿井矸石堆上检测到黄钾铁矾-粘土类矿物;非生产矿井矸石堆上检测到黄钾铁矾-针铁矿、针铁矿-赤铁矿类矿物。矿坑内的水呈酸性,而流入和流出矿井的水呈中性。


modified from Moeen Vaziri 2004), b detailed geological map of Darrehzar porphyry copper deposit





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Acero P, Hudson-Edwards KA, Gale JD (2015) Influence of pH and temperature on alunite dissolution: rates, products and insights on mechanisms from atomistic simulation. Chem Geol 419:1–9
Abedi M, Gholami A, Norouzi GH (2013) A stable downward continuation of airborne magnetic data: a case study for mineral prospectivity mapping in Central Iran. Comput Geosci 52:269–280
Anderson JE (1994) Spectral characterization of acid-mine and neutral-drainage bacterial precipitates and their relationship to water quality in a piedmont watershed. Va J Sci 45:175–186
Anderson JE (1996) Spectral measurments and detection of acid mine drainage precipitates and their relationship to water quality parameters at Contrary Creek, Mineral. PhD Diss, Geoge Mason Univ., Virginia
Anderson JE, Robbins EI (1998) Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogramm Eng Remote Sens 64:1201–1208
Bell FG, Donnelly LJ (2006) Mining and its impact on the environment. Taylor and Francis, London and New York City
Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Miner Geochem 40(1):351–403
Bigham JM, Schwertmann U, Pfab G (1996) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl Geochem 11:845–849
Camuti K, Corbett G, Harvey J, Hugenholtz J, Young D (2008) Clay minerals, alteration Terry‘s pH-temperature table. TLS, lantana exploration. https://smedg.org.au/TLS%20Kaylene%20Camuti.pdf. Accessed 15 Sept 2019
Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55
Estifanos S (2006) Spectral indicators for assessing pollution in the epithermal gold mining area of Rodalquilar, SE Spain. MSc thesis, International Institute for Geo-information Science and Earth Observation [in Netherland]
Frau F, Medas D, Da Pelo S, Wanty RB, Cidu R (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut 226:55. https://doi.org/10.1007/s11270-015-2339-0
Geological Survey of Iran (1973) Exploration for ore deposit in Kerman region, Report Y/53. Geological Survey of Iran
Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30(1/2):62–71
Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014a) Mineral exploration and alteration zone mapping using mixture tuned matched filtering approach on ASTER data at the central part of Dehaj-Sarduiyeh copper belt, SE Iran. IEEE J Sel Top Appl Earth Obs Remote Sens 7(1):284–289
Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014b) Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv Space Res 53:440–451
Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014c) Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geol Rev 62:191–198
ITT Visual Information Solutions (2008) FLAASH module user’s guide. FLAASH Module Version 4.5
Kopačková V (2014) Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int J Appl Earth Obs Geoinf 28:28–42
Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163
Lottermoser BG (2010) Mine wastes, characterization, treatment and environmental impacts. Springer, Heidelberg
Mielke C, Boesche NK, Rogass C, Kaufmann H, Gauert C, de Wit M (2014) Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions. Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens 6:6790–6816
Moeen Vaziri H (2004) History of Iran magmatism. Tarbiat Moallem Univ Press, Tehran [in Persian]
Montero SIC, Brimhall GH, Alpers CN, Swayze GA (2005) Characterization of waste rock associated with acid drainage at the Penn mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chem Geol 215:453–472
Moore F, Rastmanesh F (2006) Application of ASTER data in characterization of environmental pollution in Takab area, NW Iran. Chin J Geochem 25:226–226
Murad E, Rojík P (2004) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. In: Proc, 3rd Australian New Zealand Soils Conf, CDROM. http://www.regional.org.au/au/pdf/asssi/supersoil2004/1088_murade.pdf. Accessed 15 Sept 2019
Olías M, Miguel Nieto J, Pérez-López R, Cánovas CR, Macías F, Sarmiento AM, Galván L (2016) Controls on acid mine water composition from the Iberian pyrite belt (SW Spain). CATENA 137:12–23
Ong C, Cudahy TJ (2002) Deriving quantitative monitoring data related to acid drainage using multi-temporal hyperspectral data. In: Proc, 2nd EARSEL workshop on imaging spectroscopy. https://pdfs.semanticscholar.org/293b/4c696061cf2bdf809bea1fa1c2dcb7f2aac1.pdf. Accessed 15 Sept 2019
Ong C, Cudahy TJ, Swayze G (2003) Predicting acid drainage related physicochemical measurements using hyperspectral data. Proc, 3rd EARSEL Workshop on Imaging Spectroscopy, pp 363–373
Quental L, Sousa AJ, Marsh S, Brito G, Abreu MM (2011) Imaging spectroscopy answers to acid mine drainage detection at S. Domingos, Iberian pyrite belt, Portugal. Comunicações Geológicas 98:61–71
Ranjbar H, Hassanzadeh H, Torabi M, Ilaghi O (2001) Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman province, Iran, using principal component analysis. J Appl Geophys 48:33–41
Ranjbar H, Honarmand M, Moezifar Z (2004) Application of the Crosta technique for porphyry copper alteration mapping, using ETM + data in the southern part of the Iranian volcanic sedimentary belt. J Asian Earth Sci 24:237–243
Research System Inc. (2004) ENVI user’s guide. Version 4.1
Riaza A, Buzzi J, García-Meléndez E, Carrère V, Müller A (2011) Monitoring the extent of contamination from acid mine drainage in the Iberian pyrite belt (SW Spain) using hyperspectral imagery. Remote Sens 3:2166–2186
Richards J (2013) Remote sensing digital image analysis. Springer, Heidelberg
Roohbakhsh P, Madanchi A (2013) Investigation of acid mine drainage development using remote sensing in Karmozd mine, Mazandaran province. Proc, 8th Conf of the Iranian Assoc of Engineering Geology and the Environment, p 1–5 [in Persian]
Rowan LC, Hook SJ, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Econ Geol 98:1019–1027
Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian pyrite belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356
Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2016) Detection of acid drainage using Landsat 8 image, Sarcheshmeh and Darrehzar mines, Kerman Province. Proc, 34th National and 2nd International Geosciences Congr, pp 1–8 [in Persian]
Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2017) Investigation acid mine drainage minerals using spectral characteristics and satellite images processing of Landsat- 8, a case study: Darrehzar mine, Kerman province, Iran. J Environ Stud 43(1):31–43 [in Persian]
Shahriari H, Ranjbar H, Honarmand M (2013) Image segmentation for hydrothermal alteration mapping using PCA and concentration–area fractal model. Nat Resour Res 22(3):191–206
Shim MJ, Choi BY, Lee G, Hwang YH, Yang J, O’Loughlin EJ, Kwon MJ (2015) Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone. J Geochem Explor 159:234–242
Singh B, Wilson MJ, McHardy WJ, Fraser AR, Merrington G (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Miner 34:301–317
Soltani N, Moore F, Keshavarzi B, Sharifi R (2014) Geochemistry of trace metals and rare Earth elements in stream water, stream sediments and acid mine drainage from Darrehzar copper mine, Kerman, Iran. Water Qual Expo Health 6:97–114
Swayze GA, Smith KS, Clark RN, Sutley SJ, Pearson RM, Sam Vance J, Hageman PL, Briggs PH, Meier AL, Singleton MJ, Roth S (2000) Using imaging spectroscopy to map acidic mine waste. Environ Sci Technol 34(1):47–54
Van der Werff H, van der Meer F (2015) Sentinel-2 for mapping iron absorption feature parameters. Remote Sens 7:12635–12653
Williams DJ, Bigham JM, Cravotta CA III, Traina SJ, Anderson JE, Lyon JG (2002) Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl Geochem 17:1273–1286
Zabcic N (2008) Derivation of surface pH-values based on mineral abundances over pyrite mining areas with airborne hyperspectral data (Hymap) of Sotiel-Migollas mine complex. MSc thesis, Univ of Alberta, Spain
Zabcic N, Ong C, Müller A, Rivard B (2005) Mapping surface pH using airborne hyperspectral imagery at the Sotiel-Migollas mine, Spain. Proc, 4th EARSeL Workshop on Imaging Spectroscopy, pp 409–414
Zabcic N, Rivard B, Ong C, Mueller A (2014) Using airborne hyperspectral data to characterize the surface pH andmineralogy of pyrite mine tailings. Int J Appl Earth Obs 32:152–162
Acknowledgements
The authors are sincerely grateful to the geologists and staff of the Sarcheshmeh and Darrehzar copper mines for providing the facilities and helping us during our field work and sample collection.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Seifi, A., Hosseinjanizadeh, M., Ranjbar, H. et al. Identification of Acid Mine Drainage Potential Using Sentinel 2a Imagery and Field Data. Mine Water Environ 38, 707–717 (2019). https://doi.org/10.1007/s10230-019-00632-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10230-019-00632-2