[go: up one dir, main page]

Skip to main content
Log in

Identification of Acid Mine Drainage Potential Using Sentinel 2a Imagery and Field Data

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Secondary iron minerals associated with acid mine drainage (AMD) such as copiapite, jarosite, schwertmannite, goethite, ferrihydrite, and hematite can be generated from pyrite oxidation. This study was an effort to determine the AMD potential of the Darrehzar mine, a porphyry copper mine in the Kerman Cenozoic magmatic arc, using remote sensing and field data. The spectral angle mapper method was applied on Sentinel 2a images to identify AMD minerals and classify the study area. The produced map was verified by field surveys and laboratory analysis of rocks and sediments as well as pH and electrical conductivity measurements of water samples. Jarosite–clay group minerals were detected in the mine pit and in an active waste dump, and jarosite–goethite and goethite–hematite group minerals were identified in inactive waste dumps. Moreover, acidic water was observed in the pit, while the neutral water was where it arrives and discharges from the mine.

Zusammenfassung

Sekundäre Eisenminerale, die an saure Grubenwässer (AMD) gebunden sind, wie z.B. Copiapit, Jarosit, Schwertmannit, Goethit, Ferrihydrit und Hämatit, können durch Pyritoxidation gebildet werden. Diese Studie verfolgte das Ziel, mittels Fernerkundung und Felddaten das Auftreten von sauren Grubenwässern in der Darrehzar Mine, einer Porphyrkupfermine im Känozoischen Kerman Bogen, zu bestimmen. Die Spektralwinkelmethode wurde auf Sentinel-2a-Bilder angewandt, um AMD-Minerale zu identifizieren und das Untersuchungsgebiet zu klassifizieren. Die entstandene Karte wurde durch Felddaten, Laboranalysen von Gesteinen und Sedimenten sowie pH-Werte und elektrische Leitfähigkeiten von Wasserproben verifiziert. Im Tagebau und in der radioaktiven Abraumhalde wurden Jarosit-Tonminerale und im nichtradioaktiven Abraum wurden Minerale der Jarosit-Goethit-Gruppe und der Goethit-Hämatit-Gruppe gefunden. Zudem wurde saures Grubenwasser im Tagebau beobachtet, während aus der Grube neutrals Wasser strömt.

Resumen

Los minerales de hierro secundarios asociados con el drenaje ácido de mina (DAM) como copiapita, jarosita, schwertmannita, goetita, ferrihidrita y hematita pueden generarse a partir de la oxidación de pirita. Este estudio fue un esfuerzo para determinar el potencial de generación de AMD de la mina Darrehzar, una mina de pórfido de cobre en el arco magmático Kerman Cenozoico, utilizando sensores remotos y datos de campo. El método del ángulo espectral se aplicó en las imágenes del Sentinel 2a para identificar los minerales de AMD y clasificar el área de estudio. El mapa producido se verificó mediante estudios de campo y análisis de laboratorio de rocas y sedimentos, así como mediciones de pH y conductividad eléctrica de muestras de agua. Los minerales del grupo de jarosita-arcilla se detectaron en el pozo de la mina y en un vertedero activo de desechos; los minerales del grupo de jarosita-goethita y goethita-hematita se identificaron en los vertederos inactivos de desechos. Además, se observó agua ácida en el hoyo de la mina mientras que el agua neutra estaba donde llegaba y se descargaba de la mina.

抽象

与酸性矿山废水(AMD)相关的叶绿矾、黄钾铁矾、施氏矿、针铁矿、水铁矿、赤铁矿等次生铁矿物由黄铁矿氧化而成。利用遥感及野外资料研究了Kerman新生代岩浆弧Darrehzar斑岩铜矿的产酸潜力。在哨兵(Sentinel) 2a图像上,应用光谱角度映射法(spectral angle mapper method) 识别产酸矿物,划分产酸类型分区。利用野外调查、岩矿室内测试分析和水样的pH值、电导率测试等数据验证了产酸类型分区成果图。矿坑和生产矿井矸石堆上检测到黄钾铁矾-粘土类矿物;非生产矿井矸石堆上检测到黄钾铁矾-针铁矿、针铁矿-赤铁矿类矿物。矿坑内的水呈酸性,而流入和流出矿井的水呈中性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Moeen Vaziri 2004), b detailed geological map of Darrehzar porphyry copper deposit

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acero P, Hudson-Edwards KA, Gale JD (2015) Influence of pH and temperature on alunite dissolution: rates, products and insights on mechanisms from atomistic simulation. Chem Geol 419:1–9

    Article  Google Scholar 

  • Abedi M, Gholami A, Norouzi GH (2013) A stable downward continuation of airborne magnetic data: a case study for mineral prospectivity mapping in Central Iran. Comput Geosci 52:269–280

    Article  Google Scholar 

  • Anderson JE (1994) Spectral characterization of acid-mine and neutral-drainage bacterial precipitates and their relationship to water quality in a piedmont watershed. Va J Sci 45:175–186

    Google Scholar 

  • Anderson JE (1996) Spectral measurments and detection of acid mine drainage precipitates and their relationship to water quality parameters at Contrary Creek, Mineral. PhD Diss, Geoge Mason Univ., Virginia

  • Anderson JE, Robbins EI (1998) Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogramm Eng Remote Sens 64:1201–1208

    Google Scholar 

  • Bell FG, Donnelly LJ (2006) Mining and its impact on the environment. Taylor and Francis, London and New York City

    Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Miner Geochem 40(1):351–403

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Pfab G (1996) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl Geochem 11:845–849

    Article  Google Scholar 

  • Camuti K, Corbett G, Harvey J, Hugenholtz J, Young D (2008) Clay minerals, alteration Terry‘s pH-temperature table. TLS, lantana exploration. https://smedg.org.au/TLS%20Kaylene%20Camuti.pdf. Accessed 15 Sept 2019

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55

    Article  Google Scholar 

  • Estifanos S (2006) Spectral indicators for assessing pollution in the epithermal gold mining area of Rodalquilar, SE Spain. MSc thesis, International Institute for Geo-information Science and Earth Observation [in Netherland]

  • Frau F, Medas D, Da Pelo S, Wanty RB, Cidu R (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut 226:55. https://doi.org/10.1007/s11270-015-2339-0

    Article  Google Scholar 

  • Geological Survey of Iran (1973) Exploration for ore deposit in Kerman region, Report Y/53. Geological Survey of Iran

  • Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30(1/2):62–71

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014a) Mineral exploration and alteration zone mapping using mixture tuned matched filtering approach on ASTER data at the central part of Dehaj-Sarduiyeh copper belt, SE Iran. IEEE J Sel Top Appl Earth Obs Remote Sens 7(1):284–289

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014b) Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv Space Res 53:440–451

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Velasco Roldan F, Yusta I (2014c) Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geol Rev 62:191–198

    Article  Google Scholar 

  • ITT Visual Information Solutions (2008) FLAASH module user’s guide. FLAASH Module Version 4.5

  • Kopačková V (2014) Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int J Appl Earth Obs Geoinf 28:28–42

    Article  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  • Lottermoser BG (2010) Mine wastes, characterization, treatment and environmental impacts. Springer, Heidelberg

    Google Scholar 

  • Mielke C, Boesche NK, Rogass C, Kaufmann H, Gauert C, de Wit M (2014) Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions. Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens 6:6790–6816

    Article  Google Scholar 

  • Moeen Vaziri H (2004) History of Iran magmatism. Tarbiat Moallem Univ Press, Tehran [in Persian]

    Google Scholar 

  • Montero SIC, Brimhall GH, Alpers CN, Swayze GA (2005) Characterization of waste rock associated with acid drainage at the Penn mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chem Geol 215:453–472

    Article  Google Scholar 

  • Moore F, Rastmanesh F (2006) Application of ASTER data in characterization of environmental pollution in Takab area, NW Iran. Chin J Geochem 25:226–226

    Article  Google Scholar 

  • Murad E, Rojík P (2004) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. In: Proc, 3rd Australian New Zealand Soils Conf, CDROM. http://www.regional.org.au/au/pdf/asssi/supersoil2004/1088_murade.pdf. Accessed 15 Sept 2019

  • Olías M, Miguel Nieto J, Pérez-López R, Cánovas CR, Macías F, Sarmiento AM, Galván L (2016) Controls on acid mine water composition from the Iberian pyrite belt (SW Spain). CATENA 137:12–23

    Article  Google Scholar 

  • Ong C, Cudahy TJ (2002) Deriving quantitative monitoring data related to acid drainage using multi-temporal hyperspectral data. In: Proc, 2nd EARSEL workshop on imaging spectroscopy. https://pdfs.semanticscholar.org/293b/4c696061cf2bdf809bea1fa1c2dcb7f2aac1.pdf. Accessed 15 Sept 2019

  • Ong C, Cudahy TJ, Swayze G (2003) Predicting acid drainage related physicochemical measurements using hyperspectral data. Proc, 3rd EARSEL Workshop on Imaging Spectroscopy, pp 363–373

  • Quental L, Sousa AJ, Marsh S, Brito G, Abreu MM (2011) Imaging spectroscopy answers to acid mine drainage detection at S. Domingos, Iberian pyrite belt, Portugal. Comunicações Geológicas 98:61–71

    Google Scholar 

  • Ranjbar H, Hassanzadeh H, Torabi M, Ilaghi O (2001) Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman province, Iran, using principal component analysis. J Appl Geophys 48:33–41

    Article  Google Scholar 

  • Ranjbar H, Honarmand M, Moezifar Z (2004) Application of the Crosta technique for porphyry copper alteration mapping, using ETM + data in the southern part of the Iranian volcanic sedimentary belt. J Asian Earth Sci 24:237–243

    Article  Google Scholar 

  • Research System Inc. (2004) ENVI user’s guide. Version 4.1

  • Riaza A, Buzzi J, García-Meléndez E, Carrère V, Müller A (2011) Monitoring the extent of contamination from acid mine drainage in the Iberian pyrite belt (SW Spain) using hyperspectral imagery. Remote Sens 3:2166–2186

    Article  Google Scholar 

  • Richards J (2013) Remote sensing digital image analysis. Springer, Heidelberg

    Book  Google Scholar 

  • Roohbakhsh P, Madanchi A (2013) Investigation of acid mine drainage development using remote sensing in Karmozd mine, Mazandaran province. Proc, 8th Conf of the Iranian Assoc of Engineering Geology and the Environment, p 1–5 [in Persian]

  • Rowan LC, Hook SJ, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Econ Geol 98:1019–1027

    Article  Google Scholar 

  • Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian pyrite belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2016) Detection of acid drainage using Landsat 8 image, Sarcheshmeh and Darrehzar mines, Kerman Province. Proc, 34th National and 2nd International Geosciences Congr, pp 1–8 [in Persian]

  • Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2017) Investigation acid mine drainage minerals using spectral characteristics and satellite images processing of Landsat- 8, a case study: Darrehzar mine, Kerman province, Iran. J Environ Stud 43(1):31–43 [in Persian]

    Google Scholar 

  • Shahriari H, Ranjbar H, Honarmand M (2013) Image segmentation for hydrothermal alteration mapping using PCA and concentration–area fractal model. Nat Resour Res 22(3):191–206

    Article  Google Scholar 

  • Shim MJ, Choi BY, Lee G, Hwang YH, Yang J, O’Loughlin EJ, Kwon MJ (2015) Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone. J Geochem Explor 159:234–242

    Article  Google Scholar 

  • Singh B, Wilson MJ, McHardy WJ, Fraser AR, Merrington G (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Miner 34:301–317

    Article  Google Scholar 

  • Soltani N, Moore F, Keshavarzi B, Sharifi R (2014) Geochemistry of trace metals and rare Earth elements in stream water, stream sediments and acid mine drainage from Darrehzar copper mine, Kerman, Iran. Water Qual Expo Health 6:97–114

    Article  Google Scholar 

  • Swayze GA, Smith KS, Clark RN, Sutley SJ, Pearson RM, Sam Vance J, Hageman PL, Briggs PH, Meier AL, Singleton MJ, Roth S (2000) Using imaging spectroscopy to map acidic mine waste. Environ Sci Technol 34(1):47–54

    Article  Google Scholar 

  • Van der Werff H, van der Meer F (2015) Sentinel-2 for mapping iron absorption feature parameters. Remote Sens 7:12635–12653

    Article  Google Scholar 

  • Williams DJ, Bigham JM, Cravotta CA III, Traina SJ, Anderson JE, Lyon JG (2002) Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl Geochem 17:1273–1286

    Article  Google Scholar 

  • Zabcic N (2008) Derivation of surface pH-values based on mineral abundances over pyrite mining areas with airborne hyperspectral data (Hymap) of Sotiel-Migollas mine complex. MSc thesis, Univ of Alberta, Spain

  • Zabcic N, Ong C, Müller A, Rivard B (2005) Mapping surface pH using airborne hyperspectral imagery at the Sotiel-Migollas mine, Spain. Proc, 4th EARSeL Workshop on Imaging Spectroscopy, pp 409–414

  • Zabcic N, Rivard B, Ong C, Mueller A (2014) Using airborne hyperspectral data to characterize the surface pH andmineralogy of pyrite mine tailings. Int J Appl Earth Obs 32:152–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the geologists and staff of the Sarcheshmeh and Darrehzar copper mines for providing the facilities and helping us during our field work and sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Hosseinjanizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifi, A., Hosseinjanizadeh, M., Ranjbar, H. et al. Identification of Acid Mine Drainage Potential Using Sentinel 2a Imagery and Field Data. Mine Water Environ 38, 707–717 (2019). https://doi.org/10.1007/s10230-019-00632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-019-00632-2

Keywords