[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Exposure to climate change in Central Europe: What can be gained from regional climate projections for management decisions of protected areas?

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Climate change is expected to become an important driver influencing biodiversity. To protect biological diversity in the long term, nature conservationists must include potential climate change impacts in their management decisions. In order to incorporate effective climate change adaption strategies in the management of protected areas, potential threats of climate change need to be identified. In this study, climate model projections have been evaluated to derive information about the future exposure of nature parks to climate change. Indicators reflecting climate boundary conditions were selected in a cooperative process, considering both scientifically reliable climate scenario analysis and the requirements of park managers. The evaluation exhibits large uncertainties depending on the indicator. While for temperature, a warming trend is projected for all the regions, future projections for precipitation show the largest inter-model uncertainties. The Climatic Water Balance reflects the potential water availability and aids clarification to stakeholders, as it incorporates the temperature trend. The analysis robustly indicates a prolongation for the climatic growing season. The main challenges related to climate model information for decision-making are the uncertainties, different scales of climate and ecosystem processes and the finding of a common communication level for knowledge transfer. The results are useful for climate-influenced decision-making and provide one part of evidence for making adaptation decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler PB, Levine JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos 116:221–232. doi:10.1111/j.2006.0030-1299.15327.x

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  Google Scholar 

  • Badeck F-W, Pompe S, Kühn I, Glauer A (2008) Wetterextreme und Artenvielfalt - Zeitlich hochauflösende Klimainformationen auf dem Messtischblattraster und für Schutzgebiete in Deutschland. Natur und Landschaftsplanung 40:343–345

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJ, Foppen RPB (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc B 277:1259–1266. doi:10.1098/rspb.2009.1525

    Article  Google Scholar 

  • Brinkmann WAR (1979) Growing season length as an indicator of climatic variations? Clim Change 2:127–138. doi:10.1007/BF00133219

    Article  Google Scholar 

  • Carter TR (1998) Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric Food Sci Finn 7:161–179

    Google Scholar 

  • Cash DW, Buizer J (2005) Knowledge-action systems for seasonal to interannual climate forecasting: summary of a workshop. The National Academies Press, Washington

    Google Scholar 

  • Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Philos Trans R Soc A 365:1957–1970. doi:10.1098/rsta.2007.2068

    Article  Google Scholar 

  • Daron JD, Sutherland K, Jack C et al. (2014) The role of regional climate projections in managing complex socio-ecological systems. Reg Environ Change, Online ISSN 1436–378X, doi: 10.1007/s10113-014-0631-y

  • Déqué M, Rowell DP, Lüthi D et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70. doi:10.1007/s10584-006-9228-x

    Article  Google Scholar 

  • DVWK (ed) (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK Merkblätter 238. Hennef, Germany

  • Giorgi F (2010) Uncertainties in climate change projections, from the global to the regional scale, vol 9. EPJ Web of Conferences, pp 115–129. doi:10.1051/epjconf/201009009

  • Glugla G, König B (1989) VERMO. Ein Modell für die Berechnung des Jahresganges der Evaporation, Versickerung und Grundwasserneubildung. Tag. Akad. Landwirtsch. Wiss. DDR, Berlin 275:85–91

  • Grygoruk M, Sienkiewicz J, Hattermann F, Stagl J (2013) Climate-adapted management plan for Biebrza National Park, HABIT-CHANGE project output 5.3.1, http://www2.ioer.de/download/habit-change/HABIT-CHANGE_5_3_1e_BNP_CAMP_for_Biebrza_NP.pdf. Accessed 5 Oct 2013

  • Hattermann F, Krysanova V, Post J, Dworak T, Wrobel M, Kadner S, Leipprand A (2008) Understanding consequences of climate change for water resources and water-related sectors in Europe. In: Timmerman JG, Pahl-Wostl C, Moltgen J (eds) The Adaptiveness of IWRM, analysing European IWRM research. IWA publishing, London, pp 89–112

    Google Scholar 

  • Hawkins B, Field R, Cornell H et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Holsten A, Vetter T, Vohland K, Krysanova V (2009) Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol Model 220:2076–2087

    Article  CAS  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change. doi:10.1007/s10584-006-9213-4

    Google Scholar 

  • Jeltsch F, Moloney KA, Schwager M et al (2011) Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival. Agric Ecosyst Environ 145(2011):49–58

    Article  Google Scholar 

  • Johnson TE, Weaver CP (2009) A framework for assessing climate change impacts on water and watershed systems. Environ Manage, 43(1):118:34. doi:10.1007/s00267-008-9205-4

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63–1

  • Kyselý J, Gaál L, Beranová R, Plavcová E (2011) Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models. Theor Appl Climatol 104:529–542

    Article  Google Scholar 

  • Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T and Prather M (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL (Eds) Climatic change. The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Loehle C (2011) Criteria for assessing climate change impacts on ecosystems. Ecol Evol 1(1):63–72. doi:10.1002/ece3.7

    Article  Google Scholar 

  • Malone K, Williams H (2010) Growing season definition and use in wetland delineation. A literature review. ERDC/CRREL CR-10-3. http://libweb.wes.army.mil/uhtbin/hyperion/CRREL-CR-10-3.pdf. Accessed 28 January 2013

  • Matthews KB, Rivington M, Buchan K, Miller D, Bellocchi G (2008) Characterising the agro-meteorological implications of climate change scenarios for land management stakeholders. Clim Res 365:59–75. doi:10.3354/cr0075

    Article  Google Scholar 

  • Menzel A (2002) Phenology, its importance to the global change community. Editorial comment. Clim change 54:379–385. doi:10.1023/A:1016125215496

    Article  Google Scholar 

  • Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23(7):793–812. doi:10.1002/joc.915

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG et al (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563. doi:10.1111/j.1466-822x.2005.00190.x

    Article  Google Scholar 

  • Persson G, Bärring L, Kjellström E, Strandberg G, Rummukainen M (2007) Climate indices for vulnerability assessments. SMHI reports meteorology and climatology no 111, Norrköping/Sweden

  • Piha H, Luoto M, Piha M, Merila J (2007) Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Global Change Biol 13:300–311. doi:10.1111/j.1365-2486.2006.01276.x

    Article  Google Scholar 

  • Rivington M, Matthews KB, Buchan K, Miller D, Bellocchi G (2008) Agro-meteorological metrics for communicating climate change impacts to land managers. Asp App Biol 88:1–8

    Google Scholar 

  • Schneider S, Sarukhan J, Adejuwon J, Azar C, Baethgen W, Hope C, Moss R, Leary N, Richels R, van Ypersele J-P (2001) Overview of impacts, adapation, and vulnerability to climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, and Johnson CA (Eds) Climate change. The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.881

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156. doi:10.1016/j.biocon.2012.06.011

    Article  Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 8:1–8. doi:10.1111/j.1600-0706.2010.18270.x

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) Review. The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 265:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  Google Scholar 

  • Van Der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Habley Centre, FitzRoy Road, Exeter Ex1 3 PB, UK, pp160

  • Vohland K (2012) Climate change challenges the natura 2000 network–and shows its irreplaceability. Naturschutz und Biologische Vielfalt 118:153–166

    Google Scholar 

  • Vohland K, Rannow S, Stagl J (2014) Climate change impact modelling cascade—benefits and limitations for conservation management, In: Rannow S, Neubert M (Eds) Managing protected areas in Central and Eastern Europe under climate change. Advances in Global Change Research, Vol. 58, Springer, pp 63–76. doi:10.1007/978-94-007-7960-0_5

  • Von Wilpert K (1990) Die Jahresringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt auf Pseudogley und Parabraunerde. Freiburger Bodenkundliche Abhandlungen 24, Inst. f. Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität

  • Walther A, Linderholm HW (2006) A comparison of growing season indices for the greater baltic area. Int J Biometeorol 51(2):107–118. doi:10.1007/s00484-006-0048-5

    Article  CAS  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  Google Scholar 

  • Weaver CP, Lempert RJ, Brown C, Hall JA, Revell D, Sarewitz D (2013) Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. WIREs Clim Change 4:39–60. doi:10.1002/wcc.202

    Article  Google Scholar 

  • West JM, Julius SH, Kareiva P et al (2009) U.S. natural resources and climate change: concepts and approaches for management adaptation. Environ Manage 44(6):1001–1021. doi:10.1007/s00267-009-9345-1

    Article  Google Scholar 

Download references

Acknowledgments

The HABIT-CHANGE project is implemented through the CENTRAL EUROPE Programme co-financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Stagl.

Additional information

Editor: Ülo Mander.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stagl, J., Hattermann, F.F. & Vohland, K. Exposure to climate change in Central Europe: What can be gained from regional climate projections for management decisions of protected areas?. Reg Environ Change 15, 1409–1419 (2015). https://doi.org/10.1007/s10113-014-0704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0704-y

Keywords