[go: up one dir, main page]

Skip to main content
Log in

Natural tracers in recent groundwaters from different Alpine aquifers

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater with underground residence times between days and a few years have been investigated over more than 20 years from 487 remote sites located in different aquifer types in the Alpine belt. Analysis of the data reveals that groundwaters evolved in crystalline, evaporite, carbonate, molasse, and flysch aquifers can be clearly distinguished based on their major and trace element composition and degree of mineralisation. A further subdivision can be made even within one aquifer type based on the trace element compositions, which are characteristic for the lithologic environment. Major and trace element concentrations can be quantitatively described by interaction of the groundwater with the aquifer-specific mineralogy along the flow path. Because all investigated sites show minimal anthropogenic influences, the observed concentration ranges represent the natural background concentrations and can thus serve as a “geo-reference” for recent groundwaters from these five aquifer types. This “geo-reference” is particularly useful for the identification of groundwater contamination. It further shows that drinking water standards can be grossly exceeded for critical elements by purely natural processes.

Resumen

Durnate más de 20 años se ha investigado aguas subterráneas con una residencia subterránea con una duración de días a varios años en 487 puntos remotos localizados en diferentes tipos de acuíferos en la cadena alpina. El análisis de los datos revela que las aguas subterráneas que han evolucionado dentro de acuíferos cristalinos, evaporíticos, carbonatos, flysch, y molasse se pueden distignuir claramente en base a la composición de sus elementos mayores y marcadores y al grado de minerlización. Asimismo es posible hacer una subdivisión más específica incluso dentro de un tipo de acuífero en base a las composiciones de los elementos marcadores los cuales soncaracterísticos del ambiente litológico. Las concentraciones de los elementos marcadores se pueden describir cuantitativamente por la interacción de las aguas subterráneas con la mineralogía específica del acuífero a lo largo del trayecto del flujo. Puesto qze todos los puntos investigados muestran mínimas influencias antropogénicas, los rangos deconcentraciones observados representan las concentraciones delescenario natural y, por tanto, pueden servir como georeferencia para aguas subterráneas recientes que forman parte de estos cinco tipos de acuíferos. Esta georeferencia es particularmente útil para la identificcación de contaminación de aguas subterráneas. Asimismo muestra que los estándares de agua potable pueden mostrar excesos en elementos críticos por procesos puramente naturales.

Résumé

L’eau souterraine ayant résidé sous la surface du sol entre quelques jours et quelques années a été étudiée sur une période de plus de 20 ans à partir de 487 sites éloignés situés dans différents types d’aquifères de la ceinture alpine. L’analyse des données révèle que l’eau qui a évoluée dans des aquifères cristallins, évaporitiques, carbonatés, molassiques et composés de flysch, peut être facilement différenciée sur la base de sa composition en éléments majeurs et traces, ainsi que par son degré de minéralisation. Une subdivision supplémentaire peut être apportée à l’intérieur même d’un type d’aquifère en se basant sur la composition des éléments traces, lesquels sont caractéristiques de l’environnement lithologique. La concentration en éléments majeurs et traces peut être expliquée quantitativement par l’interaction de l’eau souterraine avec la composition minéralogique spécifique de l’aquifère le long des lignes d’écoulement. Puisque la majorité des sites étudiés ne montrent que très peu d’influences anthropogéniques, le registre de concentrations observées représente la concentration de fond naturelle et peut ainsi servir comme géo-référence pour les eaux souterraines récentes dans ces cinq types d’aquifères. Ces géo-références sont particulièrement utiles pour l’identification de la contamination des eaux souterraines. Par ailleurs, cela démontre que les standards d’eau potable peuvent être excédés pour certains éléments en raison de processus purement naturels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, Heidelberg Berlin New York

  • Appelo CAJ, Postma D (1996) Geochemistry, Groundwater and Pollution. Balkema, Rotterdam, Brookfield

  • Allen PA, Mange-Rajetzky M, Matter A, Homewood P (1985) Dynamic palaeogeography of the open Burdigalien seaway, Swiss Molasse Basin. Eclogae Geol Helv 78:351–381

    Google Scholar 

  • Atkinson TC (1975) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Sommerset, England. In: IAH Congress, Huntville, Alabama

  • Atteia O (1992) Rôle du sol dans le transfert des elements traces en solution — Application à l’étude de quelques écosystems d’altitude. (The role of the soil in the transport of dissolved trace elements—Application to different Alpine ecosystems) PhD, Federal Institute of Technology Lausanne, Switzerland

  • Atteia O (1994) Transport of major and trace elements in soils and aquifers of different ecosystems of Switzerland. Eclogae Geol Helv 87:409–428

    Google Scholar 

  • Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsula of Florida and Yucatan. Journal of Hydrology 10:330–368

    Article  Google Scholar 

  • Back W, Hanshaw BB, Plummer, LN, Rahn PH, Rightmire CT, Rubin M (1984) Process and rate of dedolomitisation: mass transfer and C14 dating in a regional carbonate aquifer. Geol Soc Am Bull 95:1,415–1,429

    Google Scholar 

  • Ball JW, Nordstrom DK (1991) WATEQ4F — User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. US Geological Survey Open-File Report 90–129

  • Basabe PP (1993) Typologie des eaux souterraines du flysch de la nappe tectonique du Niesen (Préalpes Suisses). [Typology of groundwaters derived from the flysch of the Niesen tectonic nappe (Swiss Prealps)] PhD, Federal Institute of Technology Lausanne, Switzerland

  • Blum JD, Gazis CA, Jacobson AD, Chamberlain CP (1998) Carbonate versus silicate weathering in the Raikhot watershed within the high Himalayan crystalline series. Geology 26:411–414

    Article  CAS  Google Scholar 

  • Bundesamt für Umwelt, Wald und Landschaft (BUWAL) (1998) Nationale Grundwasserqualitätsbeobachtung (NAQUA). [National groundwater quality monitoring (NAQUA)] Bern, Switzerland

  • Church TM (1979) Marine barite. In: Burns RG (ed) Marine Minerals. Min Soc Am Reviews in Mineralogy 6:175–209

    CAS  Google Scholar 

  • Dalla Piazza R (1996) Géochimie des altérations dans trois écosystèmes de sol tempérés — Application à l’acquisition des caractéristiques chimiques des solutés. (Geochemistry of mineral weathering in three temperate soil ecosystems —Characterisation of dissolved constituents.) PhD, Federal Institute of Technology Lausanne, Switzerland

  • Dematteis A (1995) Typologie géochimique des eaux des aquifères carbonatés des chaînes alpines d’Europe centrale et méridionale. (Geochemical typology of groundwaters derived from Alpine carbonate-rock aquifers of central and southern Europe.) PhD, Federal Institute of Technology Lausanne, Switzerland

  • Dreybrodt W (1998) Limestone dissolution rates in karst environments. Bulletin d’Hydrogéologie 16:167–183

    Google Scholar 

  • Dubois J-D (1993) Typologie des aquifères du cristallin: Exemple des massifs des Aiguilles Rouges et du Mont Blanc (France, Italie et Suisse). [Typology of crystalline-rock aquifers: Example of the Aiguilles Rouges and Mont Blanc massifs (France, Italy and Switzerland).] PhD, Federal Institute of Technology Lausanne, Switzerland

  • Ford DC (1998) Perspectives in karst hydrogeology and cavern genesis. Bulletin d’Hydrogéologie 16:9–29

  • Ford DC, Williams P (1989) Karst Geomorphology and Hydrology, Unwin Hyman, London

  • Frapporti G, Vriend SP, Van Gaans PFM (1996) Trace elements in the shallow groundwater of the Netherlands. A geochemical and statistical interpretation of the National Monitoring Network data. Aquatic Geochemistry 2:51–80

    CAS  Google Scholar 

  • Greber E, Baumann A, Cornaz S, Herold T, Kozel R, Muralt M, Zobrist J (2002) Grundwasserqualität der Schweiz. (Groundwater quality in Switzerland) GWA, 3:191–201(in German)

  • Harris N, Bickle M, Chapman H, Fairchild I, Bunbury J (1998) The significance of Himalayan rivers for silicate weathering rates: evidence from the Bhote Kosi tributary. Chem Geol 144:205–220

    Article  CAS  Google Scholar 

  • Hesske S (1995) Typologie des eaux souterraines de la Molasse entre Chambéry et Linz (France, Suisse, Allemagne, Autriche). [Typology of groundwaters derived from molasse aquifers between Chambéry and Linz (France, Switzerland, Germany, Austria)] PhD, Federal Institute of Technology Lausanne, Switzerland

  • Hesske S, Parriaux A, Bensimon B (1997) Geochemistry of springwaters in Molasse aquifers: Typical mineral trace elements. Eclogae Geol Hel 90:151–171

    CAS  Google Scholar 

  • Holser WT (1979a) Mineralogy of evaporites. In: Marine Minerals. Min Soc Am Reviews in Mineralogy 6:211–294

    CAS  Google Scholar 

  • Holser WT (1979b) Trace elements and isotopes in evaporites. In: Marine Minerals. Min Soc Am Reviews in Mineralogy 6:295–346

    CAS  Google Scholar 

  • Jäckli H (1970) Kriterien zur Klassifikation von Grundwasservorkommen. (Criteria for groundwater classification) Eclogae Geol Helv 63:389–434

  • Kilchmann S (2001) Typology of Recent Groundwaters from Different Aquifer environments Based on Geogenic Tracer Elements. PhD, Federal Institute of Technology Lausanne, Switzerland

  • Lebdioui S, Michelot J-L, Fontes J-CH (1990) Origine de la minéralisation sulphatée et carbonatée des eaux du tunnel sous le Mont-Blanc. (Origin of the sulphate and carbonate mineralisation of groundwaters discharging in the Mont-Blanc road tunnel.) In: A. Parriaux (ed) Proceedings of the 22nd Congress of IAH: Water Resources in Mountainous Regions 1:496–503

  • Mandia Y (1993) Typologie des aquifères évaporitiques du Trias dans le Bassin lémanique du Rhône (Alpes occidentales). [Typology of Triassic evaporite-rock aquifers in the Swiss Rhône Valley (western Alps)] PhD, Federal Institute of Technology Lausanne, Switzerland

  • Maréchal JC (1998) Les circulations d’eau dans les massifs cristallins alpins et leurs relations avec les ouvrages souterrains. (Groundwater flow in Alpine crystalline-rock massifs and its implications for underground construction.) PhD, Federal Institute of Technology Lausanne, Switzerland

  • Markert B, Friese K (eds) (2000) Trace elements — Their distribution and effects in the environment. Elsevier, Amsterdam.

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origin. Geochim Cosmochim Acta 57:4,377–4,389

    Article  Google Scholar 

  • Moore WS, Ramamoorthy J (1984) Heavy metals in natural waters: applied monitoring and impact assessment. Springer, Heidelberg Berlin New York

    Google Scholar 

  • Nriagu JO (1991) Trace metals in the environment, Elsevier, Amsterdam

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) — a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Survey Water-Resources Investigations Report 99–4259

  • Parriaux A (1981) Contribution à l’étude des ressources en eau du bassin de la Broye. (Contribution to the study of water resources in the Broye basin.) PhD, Federal Institute of Technology Lausanne, Switzerland

  • Parriaux A, Dubois J-D, Mandia Y, Basabe P, Bensimon M (1990a) The AQUITYP Project: Towards an aquifer typology in the alpine orogen. In: Parriaux A (ed.) Proceedings of the 22nd Congress of IAH: Water Resources in Mountainous Regions 1:254–262

  • Parriaux A, Mayoraz R, Mandia Y (1990b) Impact assessment of deep underground works on a mineral water resource in an alpine evaporitic context. In: Parriaux A (ed) Proceedings of the 22nd Congress of IAH: Water Resources in Mountainous Regions 2:1,249–1,258

  • Pfeifer H-R, Hansen J, Hunziker J, Rey D, Schafer M, Serneels V (1995) Arsenic in Swiss soils and waters and their relation to rock composition and mining activities. In: 3rd Int Conf on the Biogeochemistry of Trace Elements, Paris

  • Pfeifer H-R, Derron M-H, Rey D, Schlegel C, Atteia O, Dalla Piazza R, Dubois J-D, Mandia Y (2000) Natural trace element input to the soil-sediment-water-plant system: examples of background and contaminated situations in Switzerland, Eastern France and Northern Italy. In: Markert B, Friese K (eds) Trace elements — Their distribution and effects in the environment. Elsevier, Amsterdam.

  • Piper AM, Garret AA (1953) Native and contaminated groundwaters in the Long Beach-Santa Ana area, California. US Geol Survey Water Supply Paper 1,136

  • Plummer LN, Back W (1980) The mass balance approach: Application to interpreting the chemical evolution of hydrologic systems. Amer J Sci 280:130–142

    CAS  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical Modelling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota. Water Resources Research 26:1,981–2,014

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modelling NET geochemical reactions along a flow PATH, version 2.0. US Geol Survey Water-Resources Investigations Report 94–4169

  • Sahu SJ, Roy S, Jana J, Nath B, Bhattacharya R, Chatterjee D, Dey Dalal SS (2001) Water chemistry and sediment-water interaction responsible for the mobilisation of arsenic in groundwater in Bengal delta plain. In: Cidu R (ed) Proc. of the 10th Int Symp on Water-Rock Interaction—WRI-10, A. A. Balkema, Lisse, The Netherlands, pp 1,139–1,142

  • Salomons W, Förstner U (1984) Metals in the Hydrocycle. Springer, Heidelberg Berlin New York

  • Schoepfer P (1989) Sédimentologie et stratigraphie de la Molasse marine supérieure entre le Gibloux et l’Aare. (Sedimentology and stratigraphy of the Upper Marine Molasse between the Gibloux and the Aare river) PhD, University of Fribourg, Switzerland

  • Trümpy R (1980) Geology of Switzerland, A Guide Book. Wepf, Co., Basel, New York

  • Wedepohl KH (1978) Handbook of Geochemistry. Springer, Heidelberg Berlin New York

  • White AF, Bullen TD, Vivit DV, Schulz MS, Clow DW (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim Cosmochim Acta 63:1,939–1,953

    Article  Google Scholar 

  • Word Health Organisation (WHO) (1993) Guidelines for drinking-water quality. Recommendations. (2nd ed). Geneva

  • Word Health Organisation (WHO) (1998) Guidelines for drinking-water quality. Recommendations. (2nd ed). Geneva

  • Wigley TML (1973) The incongruent dissolution of dolomite. Geochim Cosmochim Acta 37:1,397–1,402

    Article  Google Scholar 

Download references

Acknowledgements

The linguistic review of the manuscript by Monique Y. Hobbs (Rock-Water Interaction, Institute of Geological Sciences, University of Bern) is greatly acknowledged. Review comments made by Dr. S. Dogramaci and Prof. Y. Travi helped to improve the clarity of the manuscript and are highly appreciated. This study was financially supported by the Swiss National Science Foundation (Grant Nº20–45730.95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybille Kilchmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilchmann, S., Waber, H.N., Parriaux, A. et al. Natural tracers in recent groundwaters from different Alpine aquifers. Hydrogeology Journal 12, 643–661 (2004). https://doi.org/10.1007/s10040-004-0366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0366-9

Keywords

Navigation