[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Dust induced radiative perturbations during an episode of long-range dust transport over Delhi, India: a high-resolution regional NWP model study

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Dust-induced modifications to the radiative fluxes/heating during a light-blocking haze episode over Delhi, India, 7–9th Nov 2017—triggered by long range transport from a severe Saudi Arabian dust storm—have been investigated with a regional NWP model, NCUM-R with prognostic dust-radiation feedbacks. The study employs ‘Double Radiation Calls’, wherein parallel runs of the radiation scheme ‘with’ (prognostic) and ‘without’ (diagnostic) dust radiative effects—while prognostic fields drive the forecast—isolate the dust-induced perturbations. The forecasted dust optical depth agreed spatially with the AOD from MODIS with Angstrom Exponent > 0.5, indicating that the dust was well mixed with the fine mode anthropogenic aerosols upwind. The ‘downward shortwave (SW) flux’ was diminished (upto − 12.9 Wm−2) in layers sampling (i) near-surface (L1Avg), (ii) well-mixed layer within the planetary boundary layer (PBL, L2Avg) and (iii) free-troposphere (FT, L3Avg). Dust-induced ‘Solar heating’ dominated in FT (upto 9.5 × 10–7 Ks−1) and the patches below (in L2Avg) exhibited a cooling, leading to thermal dipoles. The ‘upward longwave (LW) flux’ in FT was reduced and ‘LW heating’ prevailed in all levels—peak (2.5 × 10–6 Ks−1) in L2Avg—along with well-defined cooling zones in L1Avg. The dust–radiation interaction in turn influenced the boundary layer meteorology, manifested as (i) shallow PBLs that spatially correlate with dust-induced cooling of the boundary layer column, (ii) enhanced surface humidity and (iii) reduced visibility. The study is an instance of prognostic dust-radiation feedbacks improving the skill of NWP models in dust-laden regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alizadeh Choobari O, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165

    Google Scholar 

  • Alpert P, Kaufman YJ, Shay-El Y, Tanre D, da Silva A, Schubert S, Joseph JH (1998) Quantification of dust-forced heating of the lower troposphere. Nature 395:367–370

    Google Scholar 

  • Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of mineral aerosol forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys 7:81–95

    Google Scholar 

  • Bangert M, Nenes A, Vogel B, Vogel H, Barahona D, Karydis VA, Kumar P, Kottmeier C, Blahak U (2012) Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos Chem Phys 12:4045–4063. https://doi.org/10.5194/acp-12-4045-2012

    Article  Google Scholar 

  • Barbaro E, Vilà-Guerau de Arellano J, Krol MC, Holtslag AAM (2013) Impacts of aerosol shortwave radiation absorption on the dynamics of an idealized convective atmospheric boundary layer. Bound Layer Meteorol 148:31–49. https://doi.org/10.1007/s10546-013-9800-7

    Article  Google Scholar 

  • Beig G, Srinivas R, Parkhi NS, Carmichael GR, Singh S, Sahu SK, Rathod A, Maji S, Anatomy of the winter 2017 (2019) Air quality emergency in Delhi. Sci Total Environ 681:305–311. https://doi.org/10.1016/j.scitotenv.2019.04.347(ISSN 0048-9697)

    Article  Google Scholar 

  • Bellouin N, Boucher O, Haywood J, Reddy MS (2005) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438:1138–1141. https://doi.org/10.1038/nature04348

    Article  Google Scholar 

  • Bergstrom RW, Viskanta R (1973) Modeling of the effects of gaseous and particulate pollutants in the Urban atmosphere. Part I: thermal structure. J Appl Meteorol 12:901–912

    Google Scholar 

  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, et al (2011) The joint UK land environment simulator (JULES), model description—Part 1: Energy and water fluxes. Geoscientific Model Development 4:677–699

    Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 571–657. https://doi.org/10.1017/CBO9781107415324.016

    Chapter  Google Scholar 

  • Boutle IA, Eyre JEJ, Lock AP (2014) Seamless stratocumulus simulation across the turbulent gray zone. Mon Wea Rev 142:1655–1668. https://doi.org/10.1175/MWR-D-13-00229.1

    Article  Google Scholar 

  • Bravo-Aranda JA, Titos G, José M, Granados-Muñoz G-R, Navas-Guzmán F, Valenzuela A, Lyamani H, Olmo FJ, Andrey J, Alados-Arboledas L (2015) Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique. Tellus B Chem Phys Meteorol 67:1. https://doi.org/10.3402/tellusb.v67.26180

    Article  Google Scholar 

  • Brooks ME, Crocker R, Johnson B, Mulcahy J, Ngan K, Pradhan Y, Walters D (2010) Summary of the validated baseline dust forecasting capability. Technical report DERTP/09/01–01. Met Office, Exeter

    Google Scholar 

  • Brooks ME, Walters D, Johnson B (2011) Improvements to the size distribution of emitted dust in the South Asia Model. Technical Report DERTP/10/01–03. Met Office, Exeter

    Google Scholar 

  • Bush M, Allen T, Bain C, Boutle I, Edwards J, Finnenkoetter A, Franklin C, Hanley K, Lean H, Lock A, Manners J, Mittermaier M, Morcrette C, North R, Petch J, Short C, Vosper S, Walters D, Webster S, Weeks M, Wilkinson J, Wood N, Zerroukat M (2019) The first Met Office Unified Model/JULES regional atmosphere and land configuration, RAL1. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2019-130.

  • Chinnam N, Dey S, Tripathi SN, Sharma M (2006) Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing. Geophys Res Lett 33:L08803. https://doi.org/10.1029/2005GL025278

    Article  Google Scholar 

  • Chung CE, Zhang GJ (2004) Impact of absorbing aerosol on precipitation: dynamic aspects in association with convective available potential energy and convective parrameterization closure and dependence on aerosol heating profile. J Geophys Res 109:D22103

    Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Cox HC (2011) The joint UK land environment simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. https://doi.org/10.5194/gmd-4-701-2011

    Article  Google Scholar 

  • Clough SA, Kneizys FX, Davies RW (1989) Line shape and the water vapor continuum. Atmos Res 23:229–241. https://doi.org/10.1016/0169-8095(89)90020-3

    Article  Google Scholar 

  • Collaud CM, Weingartner E, Furger M, Nyeki S, Prévôt ASH, Steinbacher M (2011) Baltensperger U (2011) aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmos Chem Phys 11:5931–5944

    Google Scholar 

  • Cusack S, Edwards JM, Crowther JM (1999) Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre climate model. J Geophys Res 104:2051–2057

    Google Scholar 

  • David LM, Mohandas S, George JP, Iyengar GR, Rajagopal EN (2014) Use of NCMRWF global model forecasts in HYSPLIT model—a preprocessing system. Tech Rep. NCMRWF, NMRF/TR/2/2014 (see; https://www.ncmrwf.gov.in/HYSPLIT_TechReport(1).pdf).

  • Dharssi I, Bovis KJ, Macpherson B, Jones CP (2011) Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol Earth Syst Sci 15:2729–2746. https://doi.org/10.5194/hess-15-2729-2011

    Article  Google Scholar 

  • Dharssi I, Steinle P, Candy B (2012) Towards a kalman filter based land surface data assimilation scheme for ACCESS, CAWCR. Technical Report No. 54, September 2012

  • Dharssi I, Candy B, Bovis K (2015) Steinle P (2015) Analysis of the linearised observation operator in a soil moisture and temperature analysis scheme. SOIL Discuss 2:505–535. https://doi.org/10.5194/solid-2-505-2015

    Article  Google Scholar 

  • Dörnbrack A, Stachlewska IS, Ritter C, Neuber R (2010) Aerosol distribution around Svalbard during intense easterly winds. Atmos Chem Phys 10:1473–1490

    Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47(4):295–308

    Google Scholar 

  • Draxler RR, Hess GD (2004) HySPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD, https://www.arl.noaa.gov/ready/hysplit4.html

  • Edwards JM (1996) Efficient calculation of infrared fluxes and cooling rates using the two-stream equations. J Atmos Sci 53:1921–1932. https://doi.org/10.1175/1520-0469(1996)053<1921:ECOIFA>2.0.CO;21996

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Quart J R Meteor Soc 122:689–719. https://doi.org/10.1002/qj.49712253107

    Article  Google Scholar 

  • Francis T (2012) Temporal trends in ambient SO2 at a high altitude site in semi-arid western India: observations versus chemical transport modeling. J Environ Prot 3(7):657–680. https://doi.org/10.4236/jep.2012.37079

    Article  Google Scholar 

  • George JP, Indira Rani S, Jayakumar A, Mohandas S, Mallick S, Lodh A, Rakhi R, Sreevathsa MNR, Rajagopal EN (2016) NCUM data assimilation system, technical report, NCMRWF, India, NMRF/TR/01/2016 (see; https://www.ncmrwf.gov.in/NCUM-Data%2520Assimilation.pdf)

  • Ginoux P, Torres O (2003) Empirical TOMS index for dust aerosol: applications to model validation and source characterization. J Geophys Res 108(D17):4534. https://doi.org/10.1029/2003JD003470

    Article  Google Scholar 

  • Greed G, Haywood JM, Milton S, Keil A, Christopher S, Gupta P, Highwood EJ (2008) Aerosol optical depths over North Africa: Modeling and model validation. J. Geophys. Res 113:D00C05. https://doi.org/10.1029/2007JD009457

    Article  Google Scholar 

  • Hansen J, Sato M, Lacis A, Ruedy R (1997) The missing climate forcing. Philos T R Soc B 352:231–240. https://doi.org/10.1098/rstb.1997.0018

    Article  Google Scholar 

  • Haywood JM, Allan RP, Culverwell I, Slingo T, Milton S, Edwards J, Clerbaux N (2005) Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003. J Geophys Res 110:D05105. https://doi.org/10.1029/2004JD005232

    Article  Google Scholar 

  • Heinold B, Tegen I, Schepanski K, Hellmuth O (2008) Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys Res Lett 35:L20817. https://doi.org/10.1029/2008GL035319

    Article  Google Scholar 

  • Hsu NC, Herman JR, Gleason JF, Torres O, Seftor CJ (1999) Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J Geophys Res 104(D6):6269–6280. https://doi.org/10.1029/1998JD200086

    Article  Google Scholar 

  • Hsu NC, Tsay S-C, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569

    Google Scholar 

  • Hsu NC, Jeong M-J, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay S-C (2013) Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118:9296–9315. https://doi.org/10.1002/jgrd.50712

    Article  Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol MC, Landing W, Liu X, Mahowald N, Miller R, Morcrette J-J, Myhre G, Penner J, Perlwitz J, Stier P, Takemura T, Zender CS (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. https://doi.org/10.5194/acp-11-7781-2011

    Article  Google Scholar 

  • Jayakumar A, Sethunadh J, Rakhi R, Arulalan T, Mohandas S, Iyengar GR, Rajagopal EN (2017) Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region. Earth Space Sci 4:303–313. https://doi.org/10.1002/2016EA000242

    Article  Google Scholar 

  • Jayakumar A, Rajagopal EN, Boutle IA, George JP, Mohandas S, Webster S, Aditi S (2018) An operational fog prediction system for Delhi using the 330 m Unified Model. Atmos Sci Lett 19:e796. https://doi.org/10.1002/asl.796

    Article  Google Scholar 

  • Johnson BT, Brooks ME, Walters D, Woodward S, Christopher S, Schepanski K (2011) Assessment of the Met Office dust forecast model using observations from the GERBILS campaign. Q J R Meteorol Soc 137:1131–1148. https://doi.org/10.1002/qj.736

    Article  Google Scholar 

  • Jones TA, Christopher SA (2011) A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations. ACP 11:5805–5817

    Google Scholar 

  • Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res-Atmos 116:D23204. https://doi.org/10.1029/2011JD016283

    Article  Google Scholar 

  • Kaufman YJ, Tanr D, Remer LA, Vermote EF, Chu A (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer after the launch of MODIS the distribution. J Geophys Res Atmos 102:17051–17067

    Google Scholar 

  • Kaufman YJ, Boucher O, Tanre D, Chin M, Remer LA, Takemura T (2005a) Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 32:L17804. https://doi.org/10.1029/2005GL023125

    Article  Google Scholar 

  • Kaufman YJ, Koren I, Remer LA, Tanre D, Ginoux P, Fan S (2005b) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12. https://doi.org/10.1029/2003JD004436

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian monsoon anomalies induced by aerosol direct effects. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034

    Google Scholar 

  • Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds. Nature 380:416–419

    Google Scholar 

  • Li Z, Li C, Chen H, Tsay SC, Holben B, Huang J, Li B, Maring H, Qian Y, Shi G, Xia X, Yin Y, Zheng Y, Zhuang G (2011) East Asian studies of tropospheric aerosols and their impact on regional climate (EASTAIRC): an overview. J Geophys Res 116:D00K34. https://doi.org/10.1029/2010JD015257

    Article  Google Scholar 

  • Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res 103:31637–31645

    Google Scholar 

  • Liu L, Huang X, Ding A, Fu C (2016) Dust-induced radiative feedbacks in north China: a dust storm episode modeling study using WRF-Chem. Atmos Environ 129:43–54

    Google Scholar 

  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Weather Rev 128(9):3187–3199

    Google Scholar 

  • Lodh A, George JP, Rajagopal EN (2016) Extended kalman filter based land data assimilation system for soil moisture analysis at NCMRWF. Technical Report, NCMRWF, India, NMRF/TR/06/2016 (see; https://www.ncmrwf.gov.in/NMRF_TR6_2016.pdf)

  • Lohmann U, Feichter J (2001) Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys Res Lett 28:159–161. https://doi.org/10.1029/2000GL012051

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. https://doi.org/10.5194/acp-5-715-2005

    Article  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(D8):16415–16430. https://doi.org/10.1029/95JD00690

    Article  Google Scholar 

  • McFarquhar GM, Wang HL (2006) Effects of aerosols on trade wind cumuli over the Indian Ocean: model simulations. Quart J R Meteor Soc 132:821–843

    Google Scholar 

  • Miller RL, Knippertz P, Pérez García-Pando C, Perlwitz JP, Tegen I (2014) Impact of dust radiative forcing upon climate. In: Knippertz P, Stuut JB (eds) Mineral dust. Springer, Dordrecht

    Google Scholar 

  • Mishra AK, Koren I, Rudich Y (2015) Effect of aerosol vertical distribution on aerosol-radiation interaction: a theoretical prospect. Heliyon 1(2):E00036. https://doi.org/10.1016/j.heliyon.2015.e00036

    Article  Google Scholar 

  • Mlawer EJ, Clough SA, Brown PD, Tobin DC (1999) Recent developments in the water vapor continuum. In: Ninth ARM Science Team meeting, San Antonio, Texas, 22–26 March 1999, edited by: Burleigh N, Carrothers D, 1–6

  • Mulcahy JP, Brooks M, Ingleby B, Pradhan Y (2013) Interim report on the improvement made to the dust scheme in the Unified Model. MACC-II Report, UKMET, April 2013. (https://www.researchgate.net/publication/257758549_Interim_report_on_the_improvement_made_to_the_dust_scheme_in_the_Unified_Model)

  • Mulcahy JP, Walters DN, Bellouin N, Milton SF (2014) Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model. Atmos Chem Phys 14:4749–4778. https://doi.org/10.5194/acp-14-4749-2014

    Article  Google Scholar 

  • Myhre G, Stordal F (2001) Global sensitivity experiments of the radiative forcing due to mineral aerosols. J Geophys Res 106:18193–18204

    Google Scholar 

  • Nabat P, Somot S, Mallet M, Sevault F, Chiacchio M, Wild M (2014) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dynam 44:1127–1155. https://doi.org/10.1007/s00382-014-2205-6

    Article  Google Scholar 

  • Navas-Guzman F, Bravo-Aranda JA, Guerrero-Rascado JL, Granados-Munoz MJ, Alados-Arboledas L (2013) Statistical analysis of aerosol optical properties retrieved by Raman lidar over Southeastern Spain. Tellus B 65:21234. https://doi.org/10.3402/tellusb.v65i0.21234

    Article  Google Scholar 

  • Nicolae D, Nemuc A, Müller D, Talianu C, Vasilescu J, Belegante L, Kolgotin A (2013) Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry. J Geophys Res Atmos 118:2956–2965

    Google Scholar 

  • Otto S, Bierwirth E, Weinzierl B, Kandler K, Esselborn M, Tesche M, Schladitz A, Wendisch M, Trautmann T (2009) Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles. Tellus B 61:270–296

    Google Scholar 

  • Pandithurai GS, Dipu KK, Dani S, Tiwari DS, Bisht DPCS, Pinker RT (2008) Aerosol radiative forcing during dust events over New Delhi. India J Geophys Res 113:D13209. https://doi.org/10.1029/2008JD009804

    Article  Google Scholar 

  • Pearson KJ, Lister GMS, Birch CE, Allan RP, Hogan RJ, Woolnough ST (2014) Modelling the diurnal cycle of tropical convection across the ‘grey zone’. Q J Roy Meteor Soc 140:491–499. https://doi.org/10.1002/qj.2145

    Article  Google Scholar 

  • Perez C, Nickovic S, Pejanovic G, Baldasano JM, Ozsoy E (2006) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophys Res 111:D16206. https://doi.org/10.1029/2005JD006717

    Article  Google Scholar 

  • Pradhan Y, Brooks M (2014) Dust forecasting at the Met Office—recent developments. 6th ICAP meeting, NCAR, Boulder. 21–24 Oct 2014

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. https://doi.org/10.1126/science.1064034

    Article  Google Scholar 

  • Reale O, Lau KM, Silva AD (2011) Impact of interactive aerosol on the African Easterly Jet in the NASA GEOS-5 global forecasting system. Wea Forecast 26:504–519. https://doi.org/10.1175/WAFD-10-05025.1

    Article  Google Scholar 

  • Rémy S, Benedetti A, Bozzo A, Haiden T, Jones L, Razinger M, Flemming J, Engelen RJ, Peuch VH, Thepaut JN (2015) Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean. Atmos Chem Phys 15:12909–12933. https://doi.org/10.5194/acp-15-12909-2015

    Article  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796

    Google Scholar 

  • Salomonson VV, Barnes WL et al (1989) MODIS: advanced facility instrument for studies of the earth as a system. IEEE Trans Geosci Remote Sens 27:145–153

    Google Scholar 

  • Sarangi C, Tripathi SN, Mishra AK, Goel A, Welton EJ (2016) Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period. J Geophys Res Atmos 121:7936–7957. https://doi.org/10.1002/2015JD024711

    Article  Google Scholar 

  • Sayer AM, Hsu NC, Bettenhausen C, Jeong M-J (2013) (2013) Validation and uncertainty estimates for MODIS Collection 6 “deep blue” aerosol data. J Geophys Res Atmos 118:7864–7872

    Google Scholar 

  • Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong MJ (2014) MODIS Collection 6 aerosol products: Comparison between Aqua‘s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos 119:13965–13989

    Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic mineral aerosols. Nature 381:681–683

    Google Scholar 

  • Spyrou C (2018) Direct radiative impacts of desert dust on atmospheric water content. Aerosol Sci Technol 52(6):693–701. https://doi.org/10.1080/02786826.2018.1449940

    Article  Google Scholar 

  • Stachlewska IS, Samson M, Zawadzka O, Harenda KM, Janicka L, Poczta P, Szczepanik D, Heese B, Wang D, Borek K, Tetoni E, Proestakis E, Siomos N, Nemuc A, Chojnicki BH, Markowicz KM, Pietruczuk A, Szkop A, Althausen D, Stebel K, Schuettemeyer D, Zehner C (2018) Modification of local urban aerosol properties by long-range transport of biomass burning aerosol. Remote Sens 10:412

    Google Scholar 

  • Stier P, Seinfeld JH, Kinne S, Boucher O (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 7(19):5237–5261

    Google Scholar 

  • Tanré D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res Atmos 102:16971–16988

    Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834. https://doi.org/10.1016/S0277-3791(03)00163-X

    Article  Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100:18 707–18 726

    Google Scholar 

  • Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244

    Google Scholar 

  • Tegen I, Lacis AA, Fung I (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422

    Google Scholar 

  • Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason K (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical Basis. J Geophys Res 103:17099–17110

    Google Scholar 

  • Torres O, Bhartia PK, Herman JR, Sinyuk A, Ginoux P, Holben BA (2002) Long-term record of aerosol optical depth from toms observations and comparison to AERONET measurements. J Atmos Sci 59:398–413

    Google Scholar 

  • Torres O, Tanskanen A, Veihelmann B, Ahn C, Braak R, Bhartia PK, Veefkind P, Levelt P (2007) Aerosols and surface UV products from ozone monitoring instrument observations: an overview. J. Geophys. Res. 112:D24S47

    Google Scholar 

  • Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. https://doi.org/10.1175/1520-0469[1977]034<1149:TIOPOT>2.0.CO;2

    Article  Google Scholar 

  • Unnikrishnan CK, Mohandas S, Rajagopal EN (2016) Documentation of the land surface scheme in NCMRWF unified model. Technical Report, NCMRWF, India. NMRF/TR/05/2016 (see; https://www.ncmrwf.gov.in/NMRF_TR5_2016.pdf)

  • Walters D, Boutle I, Brooks M, Melvin T, Stratton R, Vosper S, Wells H, Williams K, Wood N, Allen T, Bushell A, Copsey D, Earnshaw P, Edwards J, Gross M, Hardiman S, Harris C, Heming J, Klingaman N, Levine R, Manners J, Martin G, Milton S, Mittermaier M, Morcrette C, Riddick T, Roberts M, Sanchez C, Selwood P, Stirling A, Smith C, Suri D, Tennant W, Vidale PL, Wilkinson J, Willett M, Woolnough S, Xavier P (2017) The met office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci Model Dev 10:1487–1520. https://doi.org/10.5194/gmd-10-1487-2017,2017

    Article  Google Scholar 

  • Wang H, Xue M, Zhang XY, Liu HL, Zhou CH, Tan SC, Che HZ, Chen B, Li T (2015) Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region—Part 1: Aerosol distributions and meteorological features. Atmos Chem Phys 15:3257–3275

    Google Scholar 

  • Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK meteorological office unified model. Quart J Roy Meteor Soc 125:1607–1636

    Google Scholar 

  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ (2008a) PC2: a prognostic cloud fraction and condensation scheme. I: scheme description. Quart J Roy Meteor Soc 134:2093–2107. https://doi.org/10.1002/qj.333

    Article  Google Scholar 

  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ, Bodas-Salcedo A (2008b) PC2: a prognostic cloud fraction and condensation scheme. II: climate model simulations. Quart J Roy Meteor Soc 134:2109–2125. https://doi.org/10.1002/qj.332

    Article  Google Scholar 

  • Wood N, Stainforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J (2014) An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the deep-atmosphere global nonhydrostatic equations. Quart J Roy Meteor Soc 140:1505–1520. https://doi.org/10.1002/qj.2235

    Article  Google Scholar 

  • Woodward S (2001) Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J Geophys Res 106(D16):18155–18166. https://doi.org/10.1029/2000JD900795

    Article  Google Scholar 

  • Woodward S (2011) Mineral dust in HadGEM2, Hadley Centre Technical Note 87, March 2011

  • Yoshioka M, Mahowald MN, Conley JA, Collins DW, Fillmore WD, Zender SC, Coleman BD (2007) Impact of desert dust radiative forcing on sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J Clim 20:1445–1467

    Google Scholar 

  • Zhang Y (2008) Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmos Chem Phys 8:2895–2932. https://doi.org/10.5194/acp-8-2895-2008

    Article  Google Scholar 

  • Zhang Q, Ma X, Tie X, Huang M, Zhao C (2009) Vertical distributions of aerosols under different weather conditions: analysis of in situ aircraft measurements in Beijing. China Atmos Environ 43:5526–5535

    Google Scholar 

  • Zhang L, Li QB, Gu Y, Liou KN, Meland B (2013) Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model. Atmos Chem Phys 13:7097–7114. https://doi.org/10.5194/acp-13-7097-2013

    Article  Google Scholar 

  • Zhao C, Liu X, Ruby Leung L, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893. https://doi.org/10.5194/acp-11-1879-2011

    Article  Google Scholar 

  • Zhong W, Haigh JD (2000) An efficient and accurate correlated-k parameterization of infrared radiative transfer for troposphere–stratosphere–mesosphere GCMs. Atmos Sci Lett 1:125–135. https://doi.org/10.1006/asle.2000.0022

    Article  Google Scholar 

  • Zhu A, Ramanathan V, Li F, Kim D (2007) Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J Geophys Res 112:D16208

    Google Scholar 

Download references

Acknowledgements

The ‘Corrected Reflectance (true-color)’ images from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the NOAA/NASA Suomi NPP, shown in the paper were obtained from https://worldview.earthdata.nasa.gov. The radiosonde data were obtained from https://weather.uwyo.edu/upperair/sounding.html. MODIS data for this work were downloaded from https://ladsweb.modaps.eosdis.nasa.gov and the Aura-OMI data from https://earthdata.nasa.gov/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timmy Francis.

Additional information

Responsible Editor: Clemens Simmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

703_2020_760_MOESM1_ESM.docx

Supplementary Fig. 1. Zoomed-in plots of the 850 and 500 hPa wind analysis for the dust source/emission region in Middle-East (domain marked with yellow box in Fig. 2b) (DOCX 1002 kb)

703_2020_760_MOESM2_ESM.docx

Supplementary Fig. 2. Zoomed-in plots of the 850 and 500 hPa wind analysis for Delhi and the adjacent regions (domain marked with yellow box in Fig. 3b, d) (DOCX 1411 kb)

703_2020_760_MOESM3_ESM.docx

Supplementary Fig. 3. The daily mean DRP to the ‘Clear Sky Downward Shortwave Flux on Levels’ (ΔSWFLDC), Wm-2, for the levels L1Avg, L2Avg, L3Avg. (DOCX 1187 kb)

703_2020_760_MOESM4_ESM.docx

Supplementary Fig. 4. The daily mean DRP to the ‘Clear Sky Upward Shortwave Flux on Levels’ (ΔSWFLUC), Wm-2, for the levels L1Avg, L2Avg, L3Avg. (DOCX 1480 kb)

703_2020_760_MOESM5_ESM.docx

Supplementary Fig. 5. The daily mean DRP to the ‘Clear Sky Upward Longwave Flux on Levels’ (ΔLWFLUC), Wm-2, for the levels L1Avg, L2Avg, L3Avg. (DOCX 1399 kb)

703_2020_760_MOESM6_ESM.docx

Supplementary Fig. 6. The daily mean DRP to the ‘Clear Sky Downward Longwave Flux on Levels’ (ΔLWFLDC), Wm-2, for L1Avg, L2Avg, L3Avg (DOCX 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, T., Jayakumar, A., Sethunadh, J. et al. Dust induced radiative perturbations during an episode of long-range dust transport over Delhi, India: a high-resolution regional NWP model study. Meteorol Atmos Phys 133, 441–465 (2021). https://doi.org/10.1007/s00703-020-00760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-020-00760-3