[go: up one dir, main page]

Skip to main content
Log in

Stable fuzzy logic control of a general class of chaotic systems

  • Advances in Intelligent Data Processing and Analysis
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new approach to the stable design of fuzzy logic control systems that deal with a general class of chaotic processes. The stable design is carried out on the basis of a stability analysis theorem, which employs Lyapunov’s direct method and the separate stability analysis of each rule in the fuzzy logic controller (FLC). The stability analysis theorem offers sufficient conditions for the stability of a general class of chaotic processes controlled by Takagi–Sugeno–Kang FLCs. The approach suggested in this paper is advantageous because inserting a new rule requires the fulfillment of only one of the conditions of the stability analysis theorem. Two case studies concerning the fuzzy logic control of representative chaotic systems that belong to the general class of chaotic systems are included in order to illustrate our stable design approach. A set of simulation results is given to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Moon FC (2004) Chaotic vibrations: an introduction for applied scientists and engineers. Wiley, Hoboken

    Book  Google Scholar 

  2. Stavroulakis P (ed) (2006) Chaos applications in telecommunications. Taylor & Francis, Boca Raton

    Google Scholar 

  3. Ohtsubo J (2006) Semiconductor lasers: stability, instability and chaos. Springer, Berlin

    Google Scholar 

  4. Matsumoto T (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circ Syst CAS 31:1055–1058

  5. Field RJ, Györgyi L (1993) Chaos in chemistry and biochemistry. World Scientific, Singapore

    Book  Google Scholar 

  6. Mosekilde E, Maistrenko Y, Postnov D (2002) Chaotic synchronization: applications to living systems, 1st edn. World Scientific, Singapore

    Google Scholar 

  7. Creedy J, Martin VL (1994) Chaos and non-linear models in economics: theory and applications. Edward Elgar Pub, Edward

    Google Scholar 

  8. Becker N (2006) Domain chaos in Rayleigh–Benard convection. PhD thesis, University of California, Santa Barbara, CA, USA

  9. Ott E (2002) Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Rössler OE (1976) An equation for continuous chaos. Phys Lett 57A:397–398

    Article  Google Scholar 

  11. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  12. Ueta T, Chen G (2000) Bifurcation analysis of Chen’s equation. Int J Bifurc Chaos 10:1917–1931

    MATH  MathSciNet  Google Scholar 

  13. Liu C, Liu T, Liu L, Liu K (2004) A new chaotic attractor. Chaos Solitons Fractals 22(5):1031–1038

    Article  MATH  MathSciNet  Google Scholar 

  14. Rucklidge AM (1992) Chaos in models of double convection. J Fluid Mech 237:209–229

    Article  MATH  MathSciNet  Google Scholar 

  15. Roopaei M, Sahraei BR, Lin TC (2010) Adaptive sliding mode control in a novel class of chaotic systems. Commun Nonlinear Sci Numer Simulat 15(12):4158–4170

    Article  MATH  Google Scholar 

  16. Roopaei M, Zolghadri JM, Jafari S (2009) Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros. Chaos 19(1):013125-1–013125-9

  17. Roopaei M, Zolghadri JM (2008) Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos 18:033133-1–033133-9

  18. Roopaei M, Zolghadri M, Meshksar S (2009) Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems. Commun Nonlinear Sci Numer Simulat 14:3670–3681

    Article  MATH  MathSciNet  Google Scholar 

  19. Calvo O, Cartwright JHE (1998) Fuzzy control of chaos. Int J Bifurc Chaos 8:1743–1747

    Article  MATH  Google Scholar 

  20. Vembarasan V, Balasubramaniam P (2013) Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques. Nonl Dyn 74:31–44

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen D, Zhao W, Sprott JC, Ma X (2013) Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonl Dyn 73:1495–1505

    Article  MATH  MathSciNet  Google Scholar 

  22. Kim D, Brent GR, Chang PH (2013) Simple, robust control and synchronization of the Lorenz system. Nonl Dyn 73:971–980

    Article  MATH  Google Scholar 

  23. Kao CH, Hsu CF, Don HS (2012) Design of an adaptive self-organizing fuzzy neural network controller for uncertain nonlinear chaotic systems. Neural Comput Applic 21:1243–1253

    Article  Google Scholar 

  24. Škrjanc I, Blažič S, Matko D (2002) Direct fuzzy model-reference adaptive control. Int J Intell Syst 17:943–963

    Article  MATH  Google Scholar 

  25. Tikk D, Johanyák ZC, Kovács S, Wong KW (2011) Fuzzy rule interpolation and extrapolation techniques: criteria and evaluation guidelines. J Adv Comput Intell Intell Informat 15:254–263

    Google Scholar 

  26. Castillo O, Martinez-Marroquin R, Melin P, Valdez F, Soria J (2012) Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf Sci 192:19–38

    Article  Google Scholar 

  27. Vaščák J, Paľa M (2012) Adaptation of fuzzy cognitive maps for navigation purposes by migration algorithms. Int J Artif Intell 8:20–37

    Google Scholar 

  28. Liu L, Liu Y-J, Li DJ (2013) Intelligence computation based on adaptive tracking design for a class of non-linear discrete-time systems. Neural Comput Applic 23:1351–1357

    Article  Google Scholar 

  29. Wang T, Tong S, Li Y (2013) Adaptive neural network output feedback control of stochastic nonlinear systems with dynamical uncertainties. Neural Comput Applic 23:1481–1494

    Article  MathSciNet  Google Scholar 

  30. Li DJ, Zhang J, Cui Y, Liu L (2013) Intelligent control of nonlinear systems with application to chemical reactor recycle. Neural Comput Applic 23:1495–1502

    Article  Google Scholar 

  31. John S, Pedro JO (2013) Neural network-based adaptive feedback linearization control of antilock braking system. Int J Artif Intell 10:21–40

    Google Scholar 

  32. Tanaka K, Wang HO (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  33. Precup RE, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comp Ind 62:213–226

    Article  Google Scholar 

  34. Li Y, Tong S, Li T (2013) Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Comput Applic 23:1207–1216

    Article  MathSciNet  Google Scholar 

  35. Sheikhan M, Shahnazi R, Yousefi AN (2013) An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines. Neural Comput Applic 23:1359–1368

    Article  Google Scholar 

  36. Gil P, Lucena C, Cardoso A, Palma L (2013) Fuzzy controllers gains tuning: a constrained nonlinear optimization approach. Neural Comput Applic 23:617–624

    Article  Google Scholar 

  37. Precup RE, Tomescu ML, Preitl S (2007) Lorenz system stabilization using fuzzy controllers. Int J Comput Commun Control II:279–287

    Google Scholar 

  38. Baranyi P (2013) The generalized TP model transformation for TS fuzzy model manipulation and generalized stability verification. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2013.2278982

    Google Scholar 

  39. Precup RE, Tomescu ML, Preitl S, Škrjanc I (2008) Stable fuzzy logic control solution for Lorenz chaotic system stabilization. Int J Artif Intell 1:23–33

    MATH  Google Scholar 

  40. Precup RE, Tomescu ML, Preitl S (2009) Fuzzy logic control system stability analysis based on Lyapunov’s direct method. Int J Comput Commun Control IV:415–426

  41. Precup RE, Petriu EM, Dragos CA, David RC (2011) Stability analysis results concerning the fuzzy control of a class of nonlinear time-varying systems. Theor Appl Math Comp Sci 1:2–10

    MATH  Google Scholar 

  42. Precup RE, Tomescu ML, Radac MB, Petriu EM, Preitl S, Dragos CA (2012) Iterative performance improvement of fuzzy control systems for three tank systems. Expert Syst Appl 39:8288–8299

    Article  Google Scholar 

  43. Precup RE, Radac MB, Tomescu ML, Petriu EM, Preitl S (2013) Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems. Expert Syst Appl 40:188–199

    Article  Google Scholar 

  44. Precup RE, Tomescu ML, Preitl S, Petriu EM, Fodor J, Pozna C (2013) Stability analysis and design of a class of MIMO fuzzy control systems. J Intell Fuzzy Syst 25:145–155

    MATH  MathSciNet  Google Scholar 

  45. Wong LK, Leung FHF, Tam PKS (2000) An improved Lyapunov function based stability analysis method for fuzzy logic control systems. In: Proceedings of 9th IEEE international conference on fuzzy systems (FUZZ-IEEE 2000), San Antonio, TX, USA, pp 429–434

  46. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  47. Preitl S, Precup RE (1996) On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots. Sci Bull PUT Trans Autom Control Comput 41(55):47–55

    Google Scholar 

  48. Baranyi P, Tikk D, Yam Y, Patton RJ (2003) From differential equations to PDC controller design via numerical transformation. Comput Ind 51:281–297

    Article  Google Scholar 

  49. Precup RE, Preitl S (2006) Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications. Acta Polyt Hung 3:61–76

    Google Scholar 

  50. Srinivasan D, Howlett RJ, Lovrek I, Jain LC, Lim CP (2010) Design and application of neural networks and intelligent learning systems. Neurocomput 73:591–592

    Article  Google Scholar 

  51. Quteishat A, Lim CP, Mohamad-Saleh J, Tweedale J, Jain LC (2011) A neural network-based multi-agent classifier system with a Bayesian formalism for trust measurement. Soft Comput 15:221–231

    Article  Google Scholar 

  52. Filip FG (2012) A decision-making perspective for designing and building information systems. Int J Comput Commun Control 7:264–272

    Article  Google Scholar 

  53. Ali MZ, Alkhatib K, Tashtoush Y (2013) Cultural algorithms: emerging social structures for the solution of complex optimization problems. Int J Artif Intell 11:20–42

    Google Scholar 

  54. Angelov P, Yager R (2013) Density-based averaging—a new operator for data fusion. Inf Sci 22:163–174

    Article  MathSciNet  Google Scholar 

  55. Favorskaya MN, Damov MV, Zotin AG (2013) Accurate spatio-temporal reconstruction of missing data in dynamic scenes. Pattern Recogn Lett 34:1694–1700

    Article  Google Scholar 

  56. Formentin S, Karimi A, Savaresi SM (2013) Optimal input design for direct data-driven tuning of model-reference controllers. Automatica 49:1874–1882

    Article  MathSciNet  Google Scholar 

  57. Petra MI, DeSilva LC (2013) Implementation of folding architecture neural networks into an FPGA for an optimized inverse kinematics solution of a six-legged robot. Int J Artif Intell 10:123–138

    Google Scholar 

  58. Precup RE, Preitl S (2006) PI and PID controllers tuning for integral-type servo systems to ensure robust stability and controller robustness. Electr Eng 88:149–156

    Article  Google Scholar 

  59. Radac MB, Precup RE, Petriu EM, Preitl S (2011) Application of IFT and SPSA to servo system control. IEEE Trans Neural Netw 22:2363–2375

    Article  Google Scholar 

  60. Gong T, Qi L (2013) Intelligent gauge control system using ARM and fuzzy PI controller. Stud Informat Control 22:43–50

    Google Scholar 

  61. Lamár K, Neszveda J (2013) Average probability of failure of aperiodically operated devices. Acta Polyt Hung 10:153–167

    Google Scholar 

  62. Phat VN, Fernando T, Trinh H (2014) Observer-based control for time-varying delay neural networks with nonlinear observation. Neural Comput Applic 24:1639–1645

    Article  Google Scholar 

  63. Li DJ, Tang L (2014) Adaptive control for a class of chemical reactor systems in discrete-time form. Neural Comput Applic 24:1807–1814

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-ID-PCE-2011-3-0109, and by a grant in the framework of the partnerships in priority areas—PN-II program of the Romanian National Authority for Scientific Research ANCS, CNDI—UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-0732. The cooperation between the Óbuda University, Budapest, Hungary, the University of Ljubljana, Slovenia, and the Politehnica University of Timisoara, Romania, in the framework of the Hungarian–Romanian and Slovenian–Romanian Intergovernmental Science & Technology Cooperation Programs is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Emil Precup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Precup, RE., Tomescu, M.L. Stable fuzzy logic control of a general class of chaotic systems. Neural Comput & Applic 26, 541–550 (2015). https://doi.org/10.1007/s00521-014-1644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1644-7

Keywords

Navigation