[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, ST) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104–107, 2015) found that ST has significantly decreased from the 1980–1994 to the 1999–2013 period for seven mid-latitude tree species in Europe. However, long-term changes in ST over the past 60 years are still not clear. Here, using in situ observations of leaf unfolding for seven dominant European tree species, we analyze the temporal change in ST over decadal time scales extending the data series back to 1951. Our results demonstrate that ST shows no statistically significant change within shifting 30-year windows from 1951 to 2013 and remains stable between 1951–1980 and 1984–2013 (3.6 versus 3.7 days °C−1). This result suggests that the significant decrease in ST over the past 33 years could not be sustained when examining the trends of phenological responses in the long run. Therefore, we could not conclude that tree spring phenology advances will slow down in the future, and the ST changes in warming scenarios are still uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. P Roy Soc B-Biol Sci 277:2451–2457

    Article  Google Scholar 

  • Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the ninth century. Int J Climatol 28:905–914

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, et al. (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15:1283–1294

    Article  Google Scholar 

  • Fitter AH, Fitter R (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  Google Scholar 

  • Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, et al. (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107

    Article  CAS  Google Scholar 

  • Hartmann DL, Tank AMGK, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, et al. (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 161–218

    Google Scholar 

  • Jackson MT (1966) Effects of microclimate on spring flowering phenology. Ecology 47:407–415

    Article  Google Scholar 

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Tech 29:897–910

    Article  Google Scholar 

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Peñuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324:887–888

    Article  Google Scholar 

  • Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:L5703

    Article  Google Scholar 

  • Sarvas R (1972) Investigations on the annual cycle of development on forest trees. Active period. Communicationes Instituti Forestalis Fenniae 76:1–110

    Google Scholar 

  • Schaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982

    Article  Google Scholar 

  • Schleip C, Rutishauser T, Luterbacher J, Menzel A (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res 113

  • Schwartz MD, Marotz GA (1986) An approach to examining regional atmosphere-plant interactions with phenological data. J Biogeogr 13:551–560

    Article  Google Scholar 

  • Schwartz MD, Marotz GA (1988) Synoptic events and spring phenology. Phys Geogr 9:151–161

    Google Scholar 

  • Vitasse Y (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol 198:149–155

    Article  Google Scholar 

  • Wang H, Ge Q, Dai J, Tao Z (2015) Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. Int J Biometeorol 59:961–969

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Major Scientific Instruments Development Project (No.: 41427805), National Natural Science Foundation of China (No.: 41401071), and National Basic Research Program of China (No.: 2012CB955304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quansheng Ge or Junhu Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOCX 54.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Rutishauser, T., Tao, Z. et al. Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol 61, 287–292 (2017). https://doi.org/10.1007/s00484-016-1210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1210-3

Keywords

Navigation