[go: up one dir, main page]

Skip to main content
Log in

A comparison of methods to estimate seasonal phenological development from BBCH scale recording

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2014

Abstract

The BBCH scale is a two-digit key of growth stages in plants that is based on standardised definitions of plant development stages. The extended BBCH scale, used in this paper, enables the coding of the entire development cycle of all mono- and dicotyledonous plants. Using this key, the frequency distribution of phenological stages was recorded which required a less intense sampling frequency. The onset dates of single events were later estimated from the frequency distribution of BBCH codes. The purpose of this study was to present four different methods from which those onset dates can be estimated. Furthermore, the effects of (1) a less detailed observation key and (2) changes in the sampling frequency on estimates of onset dates were assessed. For all analyses, phenological data from the entire development cycle of four grass species were used. Estimates of onset dates determined by Weighted Plant Development (WPD), Pooled pre-/post-Stage Development (PSD), Cumulative Stage Development (CSD) and Ordinal Logistic Regression (OLR) methods can all be used to determine the phenological progression of plants. Moreover, results show that a less detailed observation key still resulted in similar onset dates, unless more than two consecutive stages were omitted. Further results reveal that the simulation of a less intense sampling frequency had only small impacts on estimates of onset dates. Thus, especially in remote areas where an observation interval of a week is not feasible, estimates derived from the frequency distribution of BBCH codes appear to be appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

BBCH:

Biologische Bundesanstalt, Bundessortenamt and Chemical Industry

CSD:

Cumulative Stage Development

DWD:

German meteorological service

IPG:

International Phenological Gardens

OLR:

Ordinal Logistic Regression

PSD:

Pooled pre/post Stage Development

USA-NPN:

USA National Phenology Network

WPD:

Weighted Plant Development

References

  • Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612

    Article  Google Scholar 

  • Agresti A (2007) An introduction to categorical data analysis. Wiley, New York, pp 173–243

    Book  Google Scholar 

  • Bazok R, Bareiae JI, Kos T, Euljak TG, Siloviae M, Jelovean S, Kozina A (2009) Monitoring and efficacy of selected insecticides for European corn borer (Ostrinia nubilalis Hubn., Lepidoptera: Crambidae) control. J Pest Sci 82:311–319

    Article  Google Scholar 

  • Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513

    Article  CAS  Google Scholar 

  • Bleiholder H, van den Boom T, Langelüddecke P, Stauss R (1989) Einheitliche Codierung der phänologischen Stadien bei Kultur- und Schadpflanzen. Gesunde Pflanz 41:381–384

    Google Scholar 

  • Brügger R (1998) Die phänologische Entwicklung von Buche und Fichte, Beobachtungen, Variabilität, Darstellung und deren Nachvollzug in einem Modell. Geographica Bernensia G 64, Bern

  • Bruns E, Chmielewski FM, van Vliet AJH (2003) The global phenological monitoring concept. Towards international standardization of phenological networks. In: Schwarz MD (ed) Phenology: An integrative environmental science. Kluwer, Dordrecht, pp 93–104

    Chapter  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103:13740–13744

    Article  CAS  Google Scholar 

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  CAS  Google Scholar 

  • Deutscher Wetterdienst (1991) Anleitung für die phänologischen Beobachter des deutschen Wetterdienstes (BAPH). Vorschriften und Betriebsunterlagen. Deutscher Wetterdienst 17 (VuB17), Offenbach

  • Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170

    Article  CAS  Google Scholar 

  • Finn GA, Straszewski AE, Peterson V (2007) A general growth stage key for describing trees and woody plants. Ann Appl Biol 151:127–131

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  Google Scholar 

  • Janusauskaite D (2009) The effect of fertilisation intensity on spring triticale productivity and chlorophyll index in foliage. Zemdirb Agric 96:110–123

    Google Scholar 

  • Kraska P, Okon S, Palys E (2009) Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization. Acta Agrobot 62:193–206

    Google Scholar 

  • Meier U (1997) BBCH-Monograph. Growth stages of plants – Entwicklungsstadien von Pflanzen – Estadios de las plantas – Développement des Plantes. Blackwelll, Berlin

  • Meier U, Bleiholder H, Buhr L, Feller C, Hack H, Hess M, Lancashire PD, Schnock U, Stauss R, van den Boom T, Weber E, Zwerger P (2009) The BBCH system to coding the phenological growth stages of plants – history and publications. J Kulturpflanz 61:41–52

    Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Change 54:379–385

    Article  Google Scholar 

  • Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of Climate Change - Adapted behaviour and shifting species ranges. Kluwer/Plenum, New York, pp 123–137

    Google Scholar 

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolik P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, vanVliet AH, Wiegolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • ÖKL (Österreichisches Kuratorium für Landtechnik und Landentwicklung) (ed) 2006 Bundesweiter Naturkalender zur Belebung des traditionellen Wissens um die Wahl des besten Mähzeitpunktes. ÖKL, Vienna

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Price MV, Waser NM (1998) Effects of experimental warming on plant reproductive phenology in a subalpine meadow. J Ecol 79:1261–1271

    Article  Google Scholar 

  • Rodriguez-Rajo JF, Jato V, Fernandez-Gonzalez M, Aira JM (2010) The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49:56–65

    Article  Google Scholar 

  • Salazar DM, Melgarejo P, Martinez R, Martinez JJ, Hernandez F, Burguera A (2006) Phenological stages of the guava tree (Psidium guajava L.). Sci Hortic 108:157–161

    Article  Google Scholar 

  • Saska MM, Kuzovkina YA (2010) Phenological stages of willow (Salix). Ann Appl Biol 156:431–437

    Article  Google Scholar 

  • Schirone B, Leone A, Mazzoleni S, Spada F (1990) A new method of survey and data analysis in phenology. J Veg Sci 2:27–34

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Spieksma FTM, Emberlin JC, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe - Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57

    Article  Google Scholar 

  • Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in Western Europe. Aerobiologia 19:171–184

    Article  Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Yuan W, Zhou G, Wang Y, Han X, Wang Y (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791

    Article  Google Scholar 

Download references

Acknowledgments

The study was pursued within the framework of the joint research centre FORKAST and was funded by the "Bavarian Climate Programme 2020”. We thank Tim Sparks for his valuable comments on this paper. The authors gratefully acknowledge the support of the TUM Graduate School’s Faculty Graduate Center Weihenstephan at the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Cornelius.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00484-014-0858-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelius, C., Petermeier, H., Estrella, N. et al. A comparison of methods to estimate seasonal phenological development from BBCH scale recording. Int J Biometeorol 55, 867–877 (2011). https://doi.org/10.1007/s00484-011-0421-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0421-x

Keywords

Navigation