[go: up one dir, main page]

Skip to main content
Log in

Maximum likelihood estimators of the parameters of the log-logistic distribution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this article, maximum likelihood estimator(s) (MLE(s)) of the scale and shape parameters \(\alpha \) and \(\beta \) from log-logistic distribution will be respectively considered in cases when one parameter is known and when both are unknown under simple random sampling (SRS) and ranked set sampling (RSS). In addition, the MLE of one parameter, when another parameter is known using a RSS version based on the order statistic that maximizes the Fisher information for a fixed set size, will be considered. These MLEs will be compared in terms of asymptotic efficiencies. These MLEs based on RSS can be real competitors against those based on SRS. All efficiencies of these MLEs are simulated under imperfect ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Dayyeh W, Assrhani A, Ibrahim K (2013) Estimation of the shape and scale parameters of pareto distribution using ranked set sampling. Stat Pap 54(1):207–225

    Article  MathSciNet  Google Scholar 

  • Ahmad MI, Sinclair CD, Werritty A (1988) Log-logistic flood frequency analysis. J Hydrol 98(3):205–224

    Article  Google Scholar 

  • Al-Saleh MF, Al-Hadhrami SA (2003) Estimation of the mean of the exponential distribution using moving extremes ranked set sampling. Stat Pap 44(3):367–382

    Article  MathSciNet  Google Scholar 

  • Ashkar F, Mahdi S (2003) Comparison of two fitting methods for the Log-logistic distribution. Water Resour Res 39:12–17

    Article  Google Scholar 

  • Balakrishnan N, Malik HJ, Puthenpura S (1987) Best linear unbiased estimation of location and scale parameters of the log-logistic distribution. Commun Stat Theory Methods 16:3477–3495

    Article  MathSciNet  Google Scholar 

  • Bennett S (1983) Log-logistic regression models for survival data. J R Stat Soc 32(2):165–171

    Google Scholar 

  • Chen W, Xie M, Wu M (2013) Parametric estimation for the scale parameter for scale distributions using moving extremes ranked set sampling. Stat Probab Lett 83(9):2060–2066

    Article  MathSciNet  Google Scholar 

  • Chen W, Xie M, Wu M (2016) Modified maximum likelihood estimator of scale parameter using moving extremes ranked set sampling. Commun Stat Simul Comput 45(6):2232–2240

    Article  MathSciNet  Google Scholar 

  • Chen W, Tian Y, Xie M (2017) Maximum likelihood estimator of the parameter for a continuous one-parameter exponential family under the optimal ranked set sampling. J Syst Sci Complex 30(6):1350–1363

    Article  MathSciNet  Google Scholar 

  • Chen Z (2006) Estimating the shape parameter of the log-logistic distribution. Int J Reliab Qual Saf Eng 13(3):257–266

    Article  Google Scholar 

  • Dell TR, Clutter JL (1972) Ranked set sampling theory with order statistics background. Biometrics 28(2):545–555

    Article  Google Scholar 

  • Fisk PR (1961) The graduation of income distributions. Econometrica 29(2):171–185

    Article  Google Scholar 

  • Geskus RB (2001) Methods for estimating the AIDS incubation time distribution when data of seroconversion is censored. Stat Med 20:795–812

    Article  Google Scholar 

  • Gupta RC, Akman O, Lvin S (1999) A study of log-logistic model in survival analysis. Biom J 41(4):431–443

    Article  Google Scholar 

  • Kus CS, Kaya MF (2006) Estimation of parameters of the log-logistic distribution based on progressive censoring using the EM algorithm. Hacettepe J Math Stat 35(2):203–211

    MathSciNet  MATH  Google Scholar 

  • Lesitha G, Thomas PY (2013) Estimation of the scale parameter of a log-logistic distribution. Metrika 76(3):427–448

    Article  MathSciNet  Google Scholar 

  • McIntyre GA (1952) A method of unbiased selective sampling, using ranked sets. Aust J Agric Res 3:385–390

    Article  Google Scholar 

  • Omar A, Ibrahim K (2013) Estimation of the shape and scale parameters of the pareto distribution using extreme ranked set sampling. Pak J Stat 29(1):33–47

    MathSciNet  Google Scholar 

  • Reath J, Dong J, Wang M (2018) Improved parameter estimation of the log-logistic distribution with applications. Comput Stat 33(1):339–356

    Article  MathSciNet  Google Scholar 

  • Robson A, Reed D (1999) Statistical procedures for flood frequency estimation. Flood estimation handbook. Institute of Hydrology, Wallingford, p 3

    Google Scholar 

  • Shoukri MM, Mian IUM, Tracy D (1988) Sampling properties of estimators of log-logistic distribution with application to Canadian precipitation data. Can J Stat 16(3):223–236

    Article  MathSciNet  Google Scholar 

  • Stokes L (1995) Parametric ranked set sampling. Ann Inst Stat Math 47(3):465–482

    MathSciNet  MATH  Google Scholar 

  • Tiku ML, Suresh RP (1992) A new method of estimation for location and scale parameters. J Stat Plan Inference 30:281–292

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangxue Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Chen, W. & Qian, W. Maximum likelihood estimators of the parameters of the log-logistic distribution. Stat Papers 61, 1875–1892 (2020). https://doi.org/10.1007/s00362-018-1011-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1011-3

Keywords