Abstract
We extend the two-Higgs doublet models of Type I and Type II by adding a real gauge-singlet scalar S dark matter candidate (2HDMS models). We impose theoretical constraints deriving from perturbativity, stability, unitarity and correct electroweak symmetry breaking and require that the lightest CP-even Higgs, h, fit the LHC data for the ∼ 125.5 GeV state at the 68% C.L. after including existing constraints from LEP and B physics and LHC limits on the heavier Higgs bosons. We find that these models are easily consistent with the LUX and SuperCDMS limits on dark-matter-Nucleon scattering and the observed Ωh 2 for S masses above about 55 GeV. At lower m S , the situation is more delicate. For points with m S in the 6-25 GeV range corresponding to the CDMS II and CRESST-II positive signal ranges, the dark-matter-Nucleon cross sections predicted by the Type I and Type II models more or less automatically fall within the 95%–99% C.L. signal region boundaries. Were it not for the LUX and SuperCDMS limits, which exclude all (almost all) such points in the case of Type I (Type II), this would be a success for the 2HDMS models. In fact, in the case of Type II there are a few points with 5.5 GeV ≲ mS ≲ 6.2 GeV that survive the LUX and SuperCDMS limits and fall within the CDMS II 99% C.L. signal region. Possibilities for dark matter to be isospin-violating in this 2HDMS context are also examined.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
SuperCDMS collaboration, R. Agnese et al., Search for low-mass WIMPs with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
CDMS collaboration, R. Agnese et al., Silicon detector results from the first five-tower run of CDMS II, Phys. Rev. D 88 (2013) 031104 [arXiv:1304.3706] [INSPIRE].
CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].
R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].
CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].
C.E. Aalseth et al., Maximum likelihood signal extraction method applied to 3.4 years of CoGeNT data, arXiv:1401.6234 [INSPIRE].
G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].
J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].
M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, JCAP 07 (2013) 023 [arXiv:1304.6066] [INSPIRE].
J.L. Feng, J. Kumar and D. Sanford, Xenophobic dark matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].
E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Update on light WIMP limits: LUX, lite and light, JCAP 03 (2014) 014 [arXiv:1311.4247] [INSPIRE].
V. Cirigliano, M.L. Graesser, G. Ovanesyan and I.M. Shoemaker, Shining LUX on isospin-violating dark matter beyond leading order, arXiv:1311.5886 [INSPIRE].
N. Chen et al., Exothermic isospin-violating dark matter after SuperCDMS and CDEX, arXiv:1404.6043 [INSPIRE].
G.B. Gelmini, A. Georgescu and J.-H. Huh, Direct detection of light “Ge-phobic” exothermic dark matter, JCAP 07 (2014) 028 [arXiv:1404.7484] [INSPIRE].
C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].
B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].
B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].
C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].
O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].
N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].
S. Chang et al., Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].
K. Cheung, J.S. Lee and P.-Y. Tseng, Higgcision in the two-Higgs doublet models, JHEP 01 (2014) 085 [arXiv:1310.3937] [INSPIRE].
A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].
L. Wang and X.-F. Han, Status of the aligned two-Higgs-doublet model confronted with the Higgs data, JHEP 04 (2014) 128 [arXiv:1312.4759] [INSPIRE].
J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs pair production and heavy Higgs searches in the two-Higgs-doublet model of type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].
P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].
S. Kanemura, H. Yokoya and Y.-J. Zheng, Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider, Nucl. Phys. B 886 (2014) 524 [arXiv:1404.5835] [INSPIRE].
L. Wang and X.-F. Han, Study of the heavy CP-even Higgs with mass 125 GeV in two-Higgs-doublet models at the LHC and ILC, arXiv:1404.7437 [INSPIRE].
B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Constraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal, Phys. Rev. D 90 (2014) 035021 [arXiv:1405.3584] [INSPIRE].
V. Ilisie and A. Pich, Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet models, JHEP 09 (2014) 089 [arXiv:1405.6639] [INSPIRE].
S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting non-minimal Higgs sectors, arXiv:1406.3294 [INSPIRE].
A. Drozd, B. Grzadkowski and J. Wudka, Multi-scalar-singlet extension of the standard model — The case for dark matter and an invisible Higgs boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].
S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-component dark matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].
X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].
B. Grzadkowski and P. Osland, Tempered two-Higgs-doublet model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].
M.S. Boucenna and S. Profumo, Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model, Phys. Rev. D 84 (2011) 055011 [arXiv:1106.3368] [INSPIRE].
X.-G. He, B. Ren and J. Tandean, Hints of standard model Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].
Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, Two-Higgs-doublet-portal dark-matter model: LHC data and Fermi-LAT 135 GeV line, Phys. Rev. D 88 (2013) 015008 [arXiv:1212.5604] [INSPIRE].
X.-G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at the LHC and darkon models, Phys. Rev. D 88 (2013) 013020 [arXiv:1304.6058] [INSPIRE].
Y. Cai and T. Li, Singlet dark matter in a type-II two Higgs doublet model, Phys. Rev. D 88 (2013) 115004 [arXiv:1308.5346] [INSPIRE].
L. Wang, A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess, arXiv:1406.3598 [INSPIRE].
C.-Y. Chen, M. Freid and M. Sher, The next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].
J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].
M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].
M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, EWSB from the soft portal into Dark Matter and prediction for direct detection, Phys. Rev. Lett. 104 (2010) 201301 [arXiv:0912.2729] [INSPIRE].
P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].
P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].
H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].
D.S.M. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].
W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].
S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].
P.M. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].
A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].
C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].
A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].
G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].
J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane, and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1.
G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].
J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].
B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].
R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge U.K. (1985).
D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].
D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator, Comput. Phys. Commun. 181 (2010) 833 [INSPIRE].
E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].
B. Grzadkowski, O.M. Ogreid and P. Osland, Natural multi-Higgs model with dark matter and CP-violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [INSPIRE].
A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
A. Arhrib, Unitarity constraints on scalar parameters of the standard and two Higgs doublets model, hep-ph/0012353 [INSPIRE].
J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].
I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1408.2106
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Drozd, A., Grzadkowski, B., Gunion, J.F. et al. Extending two-Higgs-doublet models by a singlet scalar field — The case for dark matter. J. High Energ. Phys. 2014, 105 (2014). https://doi.org/10.1007/JHEP11(2014)105
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2014)105