[go: up one dir, main page]

Skip to main content
Log in

On spectrum of ILW hierarchy in conformal field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a system of Integrals of Motion in conformal field theory related to the \( \mathfrak{g}\mathfrak{l}(2) \) Intermediate Long Wave equation. It interpolates between the system studied by Bazhanov, Lukyanov and Zamolodchikov and the one studied by the author and collaborators. We find Bethe anzatz equations for the spectrum of this system and its \( \mathfrak{g}\mathfrak{l}(n) \) generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641.

    MathSciNet  Google Scholar 

  2. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Higher level eigenvalues of Q operators and Schroedinger equation, Adv. Theor. Math. Phys. 7 (2004) 711 [hep-th/0307108] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. S. Lukyanov and A. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Dorey, S. Faldella, S. Negro and R. Tateo, The Bethe ansatz and the Tzitzeica-Bullough-Dodd equation, Phil. Trans. Roy. Soc. Lond. A 371 (2013) 20120052 [arXiv:1209.5517] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.L. Lukyanov, ODE/IM correspondence for the Fateev model, arXiv:1303.2566 [INSPIRE].

  12. V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Lebedev and A. Radul, Generalized internal long waves equations: construction, hamiltonian structure and conservation laws, Commun. Math. Phys. 91 (1983) 543 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. B. Feigin and E. Frenkel, Quantization of soliton systems and Langlands duality, arXiv:0705.2486 [INSPIRE].

  16. G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE].

  18. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. N. Nekrasov and A. Okounkov, Quantum cohomology and quantum intermediate long wave equation, in preparation.

  20. V. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. N. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys. 79 (1989) 502.

    Article  MathSciNet  Google Scholar 

  22. C.-N. Yang and C. Yang, One-dimensional chain of anisotropic spin spin interactions. 1. Proof of Bethes hypothesis for ground state in a finite system, Phys. Rev. 150 (1966) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  23. R.J. Baxter, Exactly solved models in statistical mechanics, Dover Publications, U.S.A. (2008).

    Google Scholar 

  24. K.K. Kozlowski and E.K. Sklyanin, Combinatorics of generalized Bethe equations, Lett. Math. Phys. 103 (2013) 1047 [arXiv:1205.2968].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and (gl N , gl M ) dualities, discrete versus differential, Adv. Math. 218 (2008) 216 [math/0605172].

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013), no. 3 299-329 [arXiv:1206.6349] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in omega background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475 [hep-th/0105177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. V. Fateev and A. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. B. Estienne, V. Pasquier, R. Santachiara and D. Serban, Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model, Nucl. Phys. B 860 (2012) 377 [arXiv:1110.1101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].

  35. H. Boos, M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ Model IV: CFT limit, Commun. Math. Phys. 299 (2010) 825 [arXiv:0911.3731] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Bershtein, V. Fateev and A. Litvinov, Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory, Nucl. Phys. B 847 (2011) 413 [arXiv:1011.4090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Belavin, M. Bershtein, B. Feigin, A. Litvinov and G. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Comm. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Litvinov.

Additional information

ArXiv ePrint: 1307.8094

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinov, A.V. On spectrum of ILW hierarchy in conformal field theory. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP11(2013)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)155

Keywords

Navigation