Abstract
We consider a system of Integrals of Motion in conformal field theory related to the \( \mathfrak{g}\mathfrak{l}(2) \) Intermediate Long Wave equation. It interpolates between the system studied by Bazhanov, Lukyanov and Zamolodchikov and the one studied by the author and collaborators. We find Bethe anzatz equations for the spectrum of this system and its \( \mathfrak{g}\mathfrak{l}(n) \) generalizations.
Similar content being viewed by others
References
A. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641.
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].
P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].
V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Higher level eigenvalues of Q operators and Schroedinger equation, Adv. Theor. Math. Phys. 7 (2004) 711 [hep-th/0307108] [INSPIRE].
P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].
S. Lukyanov and A. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [INSPIRE].
P. Dorey, S. Faldella, S. Negro and R. Tateo, The Bethe ansatz and the Tzitzeica-Bullough-Dodd equation, Phil. Trans. Roy. Soc. Lond. A 371 (2013) 20120052 [arXiv:1209.5517] [INSPIRE].
S.L. Lukyanov, ODE/IM correspondence for the Fateev model, arXiv:1303.2566 [INSPIRE].
V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].
L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
D. Lebedev and A. Radul, Generalized internal long waves equations: construction, hamiltonian structure and conservation laws, Commun. Math. Phys. 91 (1983) 543 [INSPIRE].
B. Feigin and E. Frenkel, Quantization of soliton systems and Langlands duality, arXiv:0705.2486 [INSPIRE].
G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].
A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE].
N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].
N. Nekrasov and A. Okounkov, Quantum cohomology and quantum intermediate long wave equation, in preparation.
V. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391 [INSPIRE].
N. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys. 79 (1989) 502.
C.-N. Yang and C. Yang, One-dimensional chain of anisotropic spin spin interactions. 1. Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150 (1966) 321 [INSPIRE].
R.J. Baxter, Exactly solved models in statistical mechanics, Dover Publications, U.S.A. (2008).
K.K. Kozlowski and E.K. Sklyanin, Combinatorics of generalized Bethe equations, Lett. Math. Phys. 103 (2013) 1047 [arXiv:1205.2968].
E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and (gl N , gl M ) dualities, discrete versus differential, Adv. Math. 218 (2008) 216 [math/0605172].
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013), no. 3 299-329 [arXiv:1206.6349] [INSPIRE].
K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in omega background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].
D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE].
A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].
V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].
V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475 [hep-th/0105177] [INSPIRE].
V. Fateev and A. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].
B. Estienne, V. Pasquier, R. Santachiara and D. Serban, Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model, Nucl. Phys. B 860 (2012) 377 [arXiv:1110.1101] [INSPIRE].
D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].
H. Boos, M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ Model IV: CFT limit, Commun. Math. Phys. 299 (2010) 825 [arXiv:0911.3731] [INSPIRE].
N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
M. Bershtein, V. Fateev and A. Litvinov, Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory, Nucl. Phys. B 847 (2011) 413 [arXiv:1011.4090] [INSPIRE].
A. Belavin, M. Bershtein, B. Feigin, A. Litvinov and G. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Comm. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1307.8094
Rights and permissions
About this article
Cite this article
Litvinov, A.V. On spectrum of ILW hierarchy in conformal field theory. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP11(2013)155
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2013)155