Abstract
We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on \( \overline{\mathrm{MS}} \) renormalization of the mixing angles and the soft-Z 2-symmetry-breaking scale M sb in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent S-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general R ξ -gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the \( \overline{\mathrm{MS}} \) renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
D. Pierce and A. Papadopoulos, Radiative corrections to the Higgs boson decay rate Γ(H → ZZ) in the minimal supersymmetric model, Phys. Rev. D 47 (1993) 222 [hep-ph/9206257] [INSPIRE].
A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan β in the MSSM, Phys. Rev. D 66 (2002) 095014 [hep-ph/0205281] [INSPIRE].
N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan β and gauge invariance, Phys. Rev. D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE].
R. Santos and A. Barroso, On the renormalization of two Higgs doublet models, Phys. Rev. D 56 (1997) 5366 [hep-ph/9701257] [INSPIRE].
S. Kanemura, Y. Okada, E. Senaha and C.P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].
D. Lopez-Val and J. Solà, Neutral Higgs-pair production at linear colliders within the general 2HDM: quantum effects and triple Higgs boson self-interactions, Phys. Rev. D 81 (2010) 033003 [arXiv:0908.2898] [INSPIRE].
M. Krause, R. Lorenz, M. Mühlleitner, R. Santos and H. Ziesche, Gauge-independent renormalization of the 2-Higgs-doublet model, arXiv:1605.04853 [INSPIRE].
A. Denner and T. Sack, Renormalization of the quark mixing matrix, Nucl. Phys. B 347 (1990) 203 [INSPIRE].
S. Kanemura, M. Kikuchi and K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B 896 (2015) 80 [arXiv:1502.07716] [INSPIRE].
P. Gambino, P.A. Grassi and F. Madricardo, Fermion mixing renormalization and gauge invariance, Phys. Lett. B 454 (1999) 98 [hep-ph/9811470] [INSPIRE].
Y. Yamada, Gauge dependence of the on-shell renormalized mixing matrices, Phys. Rev. D 64 (2001) 036008 [hep-ph/0103046] [INSPIRE].
J.M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26 (1982) 1453 [INSPIRE].
J.M. Cornwall and J. Papavassiliou, Gauge invariant three gluon vertex in QCD, Phys. Rev. D 40 (1989) 3474 [INSPIRE].
J. Fleischer and F. Jegerlehner, Radiative corrections to Higgs decays in the extended Weinberg-Salam model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].
P. Gambino and P.A. Grassi, The Nielsen identities of the SM and the definition of mass, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254] [INSPIRE].
S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-loop renormalization in the Standard Model. Part I: prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].
O. Piguet and K. Sibold, Gauge independence in ordinary Yang-Mills theories, Nucl. Phys. B 253 (1985) 517 [INSPIRE].
A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].
B.A. Kniehl, C.P. Palisoc and A. Sirlin, Higgs boson production and decay close to thresholds, Nucl. Phys. B 591 (2000) 296 [hep-ph/0007002] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e − → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e − → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
M. Böhm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Teubner, Stuttgart Germany (2001).
A. Sirlin, Radiative corrections in the SU(2) L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].
W.J. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2) L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].
A. Sirlin and W.J. Marciano, Radiative corrections to ν μ + N → μ − + X and their effect on the determination of ρ 2 and sin2 θ W , Nucl. Phys. B 189 (1981) 442 [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
B.W. Lee and J. Zinn-Justin, Spontaneously broken gauge symmetries. 4. General gauge formulation, Phys. Rev. D 7 (1973) 1049 [INSPIRE].
D. Lopez-Val and J. Solà, Δr in the two-Higgs-doublet model at full one loop level — and beyond, Eur. Phys. J. C 73 (2013) 2393 [arXiv:1211.0311] [INSPIRE].
Y. Yamada, Two loop renormalization of tan β and its gauge dependence, Phys. Lett. B 530 (2002) 174 [hep-ph/0112251] [INSPIRE].
LHC Higgs Cross section Working Group collaboration, I. Low et al., Beyond the Standard Model predictions, LHCHXSWG-DRAFT-INT-2016-009, CERN, Geneva Switzerland accessed June 29 2016.
J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs pair production and heavy Higgs boson searches in the two-Higgs-doublet model of type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].
Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].
C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].
C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].
C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].
S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].
S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].
G. Passarino, C. Sturm and S. Uccirati, Complete electroweak corrections to Higgs production in a Standard Model with four generations at the LHC, Phys. Lett. B 706 (2011) 195 [arXiv:1108.2025] [INSPIRE].
A. Denner et al., Higgs production and decay with a fourth Standard-Model-like fermion generation, Eur. Phys. J. C 72 (2012) 1992 [arXiv:1111.6395] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
S. Actis, A. Ferroglia, G. Passarino, M. Passera, Ch. Sturm and S. Uccirati, GraphShot , a Form package for automatic generation and manipulation of one- and two-loop Feynman diagrams, unpublished.
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
G. Passarino, An approach toward the numerical evaluation of multiloop Feynman diagrams, Nucl. Phys. B 619 (2001) 257 [hep-ph/0108252] [INSPIRE].
G. Passarino and S. Uccirati, Algebraic numerical evaluation of Feynman diagrams: two loop self-energies, Nucl. Phys. B 629 (2002) 97 [hep-ph/0112004] [INSPIRE].
A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, Two loop vertices in quantum field theory: infrared convergent scalar configurations, Nucl. Phys. B 680 (2004) 199 [hep-ph/0311186] [INSPIRE].
G. Passarino and S. Uccirati, Two-loop vertices in quantum field theory: infrared and collinear divergent configurations, Nucl. Phys. B 747 (2006) 113 [hep-ph/0603121] [INSPIRE].
S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys. B 703 (2004) 3 [hep-ph/0402132] [INSPIRE].
A. Arhrib, Unitarity constraints on scalar parameters of the standard and two Higgs doublets model, in Workshop on Noncommutative Geometry, Superstrings and Particle Physics, Rabat Morocco June 16–17 2000 [hep-ph/0012353] [INSPIRE].
R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].
O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].
O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].
G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].
G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740 (2015) 51 [arXiv:1407.4747] [INSPIRE].
M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].
M. Spira, V2HV webpage, http://tiger.web.psi.ch/proglist.html.
J. Campbell, K. Ellis and C. Williams, MCFM — Monte Carlo for FeMtobarn processes webpage, http://mcfm.fnal.gov/.
A. Denner, S. Dittmaier, S. Kallweit and A. Mück, HAWK 2.0: a Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders, Comput. Phys. Commun. 195 (2015) 161 [arXiv:1412.5390] [INSPIRE].
O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo — Higgs strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [INSPIRE].
R.V. Harlander, S. Liebler and T. Zirke, Higgs strahlung at the Large Hadron Collider in the 2-Higgs-doublet model, JHEP 02 (2014) 023 [arXiv:1307.8122] [INSPIRE].
A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].
CMS collaboration, Search for the Standard Model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].
NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].
J.C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1607.07352
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Denner, A., Jenniches, L., Lang, JN. et al. Gauge-independent \( \overline{\mathrm{MS}} \) renormalization in the 2HDM. J. High Energ. Phys. 2016, 115 (2016). https://doi.org/10.1007/JHEP09(2016)115
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2016)115