Abstract
Consequences of gauging exact \( {\mathbb{Z}}_k^C \) center symmetries in several simple SU(N) gauge theories, where k is a divisor of N, are investigated. Models discussed include: the SU(N) gauge theory with Nf copies of Weyl fermions in self-adjoint single-column antisymmetric representation, the well-discussed adjoint QCD, QCD-like theories in which the quarks are in a two-index representation of SU(N), and a chiral SU(N) theory with fermions in the symmetric as well as in anti-antisymmetric representations but without fundamentals. Mixed 't Hooft anomalies between the 1-form \( {\mathbb{Z}}_k^C \) symmetry and some 0- form (standard) discrete symmetry provide us with useful information about the infrared dynamics of the system. In some cases they give decisive indication to select only few possiblities for the infrared phase of the theory.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP07 (2010) 070 [arXiv:1005.0002] [INSPIRE].
A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
O. Aharony, N. Seiberg and Y. Tachikawa, Reading betw een the line s of four-dimensional gauge theories, JHEP08 (2013) 115 [arXiv:1305.0318] [INSPIRE].
D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetrie s, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Rev ersal and Temperature, JHEP05 (2017) 091 [arXiv:1703.00501] [INSPIRE].
Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP06 (2017) 102 [arXiv:1705.01949] [INSPIRE].
H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev.D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].
Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of massless ℤN-QCD, Phys. Rev.D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalie s and deconfinement in quantum antiferromagnets, Phys. Rev.B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev.D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].
M. Shifman, Remarks on Adjoint QCD with k Flavors, k 2, Mod. Phys. Lett.A 28 (2013) 1350179 [arXiv:1307.5826] [INSPIRE].
C. Cordova and T.T. Dumitrescu, Candidate Phases for SU(2) Adjoint QCD 4with Two Flavors from \( \mathcal{N} \) = 2 Supersymmetric Yang-Mills Theory, arXiv:1806.09592 [INSPIRE].
E. Poppitz and T.A. Ryttov, Possible new phase for adjoint QCD, Phys. Rev.D 100 (2019) 091901(R) [arXiv:1904.11640] [INSPIRE].
Z. Wan and J. Wang, Adjoint QCD 4, Deconfined Critical Phenomena, Symmetry-Enriched Topological Quantum Field Theory and Higher Symmetry-Extension, Phys. Rev.D 99 (2019) 065013 [arXiv:1812 .11955] [INSPIRE].
M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models and high- T super Yang-Mills domain walls, JHEP09 (2018) 076 [arXiv:1807.00093] [INSPIRE].
Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP08 (2018) 171 [arXiv:1807.07666] [INSPIRE].
M.M. Anber and E. Poppitz, Domain walls in high-TSU(N) super Yang-Mills theory and QCD(adj), JHEP05 (2019) 151 [arXiv:1811.10642] [INSPIRE].
S. Yamaguchi, 't Hooft anomaly matching condition and chiral symmetry breaking without bilinear condensate, JHEP01 (2019) 014 [arXiv:1811.09390] [INSPIRE].
M.M. Anber, Self-conjugate QCD, JHEP10 (2019) 042 [arXiv:1906.10315] [INSPIRE].
S. Bolognesi, K. Konishi, A. Luzio and Y. Tanizaki, Dynamics from symmetries in chiral gauge theories, in preparation.
A.M. Polyakov, Thermal Properties of Gauge Fields and Quark Liberation, Phys. Lett.B 72 (1978) 477 [INSPIRE].
L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett.B 260 (1991) 291 [INSPIRE].
C. Csaki and H. Murayama, Discrete anomaly matching, Nucl. Phys.B 515 (1998) 114 [hep-th/9710105] [INSPIRE].
S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys.B 169 (1980) 373 [INSPIRE].
S. Bolognesi, K. Konishi and M. Shifman, Patterns of symmetry breaking in chiral QCD, Phys. Rev.D 97 (2018) 094007 [arXiv:1712.04814] [INSPIRE].
S. Bolognesi and K. Konishi, Dynamics and symmetries in chiral SU(N) gauge theories, Phys. Rev.D 100 (2019) 114008 [arXiv:1906.01485] [INSPIRE].
Y. Nambu, Quasiparticles and Gauge Invaria nce in the Theory of Superconductivity, Phys. Rev.117 (1960) 648 [INSPIRE].
P.W. Anderson, Plasmons, Gauge Invariance and Mass, Phys. Rev.130 (1963) 439 [INSPIRE].
J.S. Schwinger, Gauge Invariance and Mass, Phys. Rev.125 (1962) 397 [INSPIRE].
M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett.100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].
L. Del Debbio, Recent progress in simulations of gauge theories on the lattice, J. Phys. Conf. Ser.640 (2015) 012049 [INSPIRE].
N. Seiberg and E. Witten, El ectric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys.890 (2014) 1 [arXiv:1312.2684] [INSPIRE].
I. Affieck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys.B 256 (1985) 557 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric Instanton Calculus (Gauge Theories with Matter), Nucl. Phys.B 260 (1985) 157 [Yad. Fi z.42 (1985) 1499][INSPIRE].
D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative Aspects in Supersymmetric Gauge Theories, Phys. Rept.162 (1988) 169 [INSPIRE].
N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys.B 559 (1999) 123 [hep-th/9905015] [INSPIRE].
G. ’t Hooft, Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking, in Recent Developments In Gauge Theories, G. 't Hooft et al. eds., Plenum Press, New York U.S.A. (1980), reprinted as E. Farhi and R. Jackiw, Dynamical Symmetry Breaking, R.W. Jackiw ed., World Scientific, Singapore (1982), p. 345.
D. Finnell and P. Pouliot, Instanton calculations versus exact results in four-dimensional SUSY gauge theories, Nucl. Phys.B 453 (1995) 225 [hep-th/9503115] [INSPIRE].
K. Konishi and A. Ricco, Calculating gluino condensates in N= 1 SYM from Seiberg- Witten curves, Phys. Lett.B 570 (2003) 118 [hep-th/0306128] [INSPIRE].
B. Zumino, Chiral Anomalies And Differential Geometry, in proceedings of the Les Houches Summer School on Theoretical Physics: Relativity, Groups and Topology, Les Houches, France, 27 June--4 August 1983, in Current Algebra and Anomalies , World Scientific (1985), pp. 361-391
J. Manes, R. Stora and B. Zumino, Algebraic Study of Chiral Anomalies, Commun. Math. Phys.102 (1985) 157 [INSPIRE].
C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
G. 't Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys.B 153 (1979) 141 [INSPIRE].
G. 't Hooft, Some Twisted Selfdual Solutions for the Yang-Mills Equatio ns on a Hypertorus, Commun. Math. Phys.81 (1981) 267 [INSPIRE].
P. van Baal, Some Results for SU(N) Gauge Fields on the Hypertorus, Commun. Math. Phys.85 (1982) 529 [INSPIRE].
T.D. Cohen, Center symmetry and area laws, Phys. Rev.D 90 (2014) 047703 [arXiv:1407.4128] [INSPIRE].
A.O. Barut and R. Raczka, Theory of group representations and applications, Polish Scientific Publishers PWN, Warszawa Poland (1980).
D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1909.06598
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bolognesi, S., Konishi, K. & Luzio, A. Gauging 1-form center symmetries in simple SU(N) gauge theories. J high energy phys 2020, 48 (2020). https://doi.org/10.1007/JHEP01(2020)048
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)048