[go: up one dir, main page]

Skip to main content
Log in

Biodegradation of Cypermethrin by Pseudomonas in a batch activated sludge process

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The biodegradation of Cypermethrin (20 to 125 mg/L) in an effluent using batch activated sludge was studied. Degradation was found to occur to a great extent only in the presence of Pseudomonas (IES-Ps-1) culture. Under aerobic conditions using mechanical aerators, Cypermethrin (20 mg/L) was almost completely degraded in just over 48 h at ambient temperature. Further loading of organic compound in subsequent experiments demonstrated that IES-PS-1was capable to degrade 82 % Cypermethrin at 40 mg/L dose in approximately 48 h. When the concentration was increased to 80 mg/L, 50% degradation of this compound was observed. Over this time period the cells could utilize only 17 % of Cypermethrin when it was given 125 mg/L, respectively. These findings indicate that increased concentration of Cypermethrin has a marked effect on biodegradation performance of IES-Ps-1 with a modest increased in the duration of lag phase, but did not lead to complete inhibition or cell death. These results proved that IES-Ps-1 is responsible for Cypermethrin degradation. Such finding may be useful in designing a scale-up in situ or on-site hazardous waste bioremediation process for field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • APHA. (1992). Standard methods for examination of water and wastewater, 18th edi., American Public Health Association, Washington, D.C.

    Google Scholar 

  • Arnol, S. M., Hickey, W. J., (1995). Degradation of atrazine by Fenton’s reagent: Condition optimization and product quantification. Environ. Sci. Technol., 29, x]2083-2089.

  • Babcock, R. W., Jr, K. S., Ro, C. C., Hsick, Stenstorm, M. K., (1992). Development of an offline enricher-reactor process for activated sludge degradation of hazardous waste. Water Environ. Res., 64, 782–791.

    Article  CAS  Google Scholar 

  • Berchtold, S. R., Vanderloop, S. L., Suidan, M. T., Maloney, S. W., (1995). Treatment of 2,4-diaminotoluene using a two stage system: fluidized-bed anaerobic granular activated carbon reactor. Wat. Environ. Res., 67, x]1081-1091.

    Google Scholar 

  • Bergey’s Manual of Determinative Bacteriology, (1994). Edited by Hensyl W. R.), 9th. Edn. Williams & Wilkins, Baltimore, Mass.

  • Chaudhry, G. R., (1994). Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, OR. USA.

    Google Scholar 

  • Collins, C. H. and Lyne, P. M., (1985). Microbiological Methods. 5th. Edition. Butterworth and Co (Publishers) Ltd.

  • Dagley, S. (1986). Biochemistry of aromatic hydrocarbons degradation in Pseudomonads. In: The Bacteria. Vol.10. Edited by J. R. Sokatch. Academic Press. New York: 527.

  • Dolfing, J., Zeyer, J., Binder-Eicher, P., Schwarzenback and R. P., (1990). Isolation and charaterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol., 154(4):x]336-341

    Google Scholar 

  • Goudar, C. T. and Strevett, K. A., (2000). Substrate inhibition kinetics of phenol biodegradation. Wat. Env. Res., 72, x]50-55.

    Google Scholar 

  • Grady, C. P. L., (1986). Biodegradation of hazardous waste by conventional biological treatments. Haz. Wastes Haz. Mater., 3, 333–365.

    Article  CAS  Google Scholar 

  • Grant, R. J., Daninell, T. J. and Betts, W. B., (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. J. Appl. Microbiol., 92(3), 534–540.

    Article  CAS  Google Scholar 

  • Hanel, K., (1988). Biological treatment of sewage by the activated sludge process. Ellis Horwood Publisher, John Wiley and Sons. New York, USA.

    Google Scholar 

  • Hashmi, I., (2000). Microbiological transformation of hazardous waste during biological treatment. Ph.D. Thesis. Institute of Environmental Studies, University of Karachi. Pakistan.

    Google Scholar 

  • Haugland, R. A., Schlemm, D. J., Lyons, R.P 3rd.rd., Sferra, P. R., Chakarbarty, A. M., (1990). Degradation of the chlorinated phenoxy acetate herbicide-2,4-dichlorophenoxy acetic acid and 2,4,5-trichlorophenoxy acetic acid by pure and mixed cultures. Appl. Environ Microbiol., 56(5), 1357–1362.

    CAS  Google Scholar 

  • Huston, L. P., Pignatello, J. J., (1999). Degradation of selected pesticide active ingredients and commercial formulation in water by the photo assisted fenton reaction. J. Water Res. 33(5), 1238–1246.

    Article  CAS  Google Scholar 

  • Karpouzas, D. G., Morgan, J. A., Walker, A., (2000). Isolation and characterization of 23 carbo-furan-degrading from soils from distant geographical areas. Lett. Appl. Microbiol., 31(5), x]353-8.

    Google Scholar 

  • Kumaran, P., Shivaraman, N., (1988). Biological treatment of toxic industrial wastes. In: Biotreatment systems, D. L. Wise Ed. CRC Press, Boca Raton, FL. 1, 227–283.

    Google Scholar 

  • Lal, R., Lal, S., Dhanraj, P. S., Saxena, D. M., (1995). Manipulation of catabolic genes for the degradation and detoxification of xenobiotics. Adv. Appl. Microbiol., 41, 55–95.

    Article  CAS  Google Scholar 

  • Lee, S. G., Yoon, B. D., Park, Y. H., Oh, H. M., (1998). Isolation of a novel pentacholorophenol-degrading bacterium, Pseudomonas sp. Bu 34. J. Appl. Microbiol., 85, 1–8.

    Article  CAS  Google Scholar 

  • Lewis, D. L., Kollig, H. P. and Hodson, R. E., (1986). Nutrient limitation and adaptation of microbial population to chemical transformations. Appl. Environ. Microbiol., 51, 598–603.

    CAS  Google Scholar 

  • Maloney, S. E., Maule, A., Smith, A. R. W., (1988). Microbial transformation of the pyrethroid insecticides: Permethrin, Deltamethrin, Fastac, Fenvalerate and Fluvalinate. Applied and Environment Microbiology. 2874–2876.

  • Mangat, S. S., (1999). Biodegradation of the herbicide 2,4-dichlorophenoxy-acetic acid (2,4-D) in sequencing batch reactors. Water Res., 33(3): 861–867.

    Article  CAS  Google Scholar 

  • Maria, K., Graciela, C., Zauscher, F., (2002). Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. EJB J. Env. Biotech., 5 (2).

  • Martin, M., Mengs, G., Plaza, E., Garbi, C., Sanchez, M., Gibello, A., Gutierrez, F., Ferrer, E., (2000). Propachlor removal by Pseudomonas strain GCH 1 in an immobilized cell system. Appl Environ Microbiol., 66(3), 1190–1194.

    Article  CAS  Google Scholar 

  • Pesc, S. F. and Wunderlin, D. A., (1997). Biodegradation of 2,4- and 2,6-diaminotoluene by acclimated bacteria. Water Res., 31(7), 1601–1608.

    Article  Google Scholar 

  • Ramanathan, M. P. and Lalithakumari, D., (1999). Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl. Biotechnol., 80(1), 1–12.

    CAS  Google Scholar 

  • Ramos, T. L., Duque, E., Huertas, M. J., Haidour, A., (1995). Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentration of aromatic hydrocarbons. J. Bacteriol., 177, 3911–916.

    CAS  Google Scholar 

  • Rani, N. L. and Lalitha Kumari, D., (1994). Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol., 40(12), 1000–6.

    Article  CAS  Google Scholar 

  • Roy, D., Monstafa, H., Maillacheruvu, K., (1997). Analine degradation in a soil slurry bioreactor. J. Environ. Sci. Health., 32(8), 2367–2377.

    Google Scholar 

  • Rozkov A., Vassiljeva, I., Kurvet, M., Kahru, A., Preis, S., Kharchenko, A., Kricheuskayam, M., Liiv, M., Kaard, A., Vilu, R., (1999). Laboratory study of bioremediation of rocket fuel-polluted ground water. Water Res., 33(5): 1303–1313.

    Article  CAS  Google Scholar 

  • Safe, S. H., (1984). Microbial degradation of polychlorinatedbiphenyls, In: Microbial degradation of organic compounds, Gibson. D. T. Ed., Marcel Dekker, New York. 361.

    Google Scholar 

  • Sapiets, A., Swaine, H., Tandy, M. J., (1984). Cypermethrin. In: Analytical methods for pesticides and plants growth regulators. Zweig G., Sherma J. (Eds). Academic Press, New York, XIII, 33.

    Google Scholar 

  • Sayler, G. S. and Blackburn, J. W., (1989). Modern biological methods: The role of biotechnology. In: Biotreatment of agricultural wastewater, ME Huntley, Ed. CRC Press, Boca Raton, FL. 53–71.

    Google Scholar 

  • Sisodia, S. S., Weber, A. S., Jensen, J. N., (1996). Continuous culture biodegradation of simazine’s chemical oxidation products., Water Res., 30(9), 2055–2064.

    Article  CAS  Google Scholar 

  • Smith-Greeier, L. L. and Adkins, A., (1996). Isolation and Characterization of soil microorganisms capable of utilizing the herbicide dichloro-p-methyl as a sole source of carbon ans energy. Can J. Microbiol., 42(2), 221–226.

    Article  CAS  Google Scholar 

  • Somich, C. J., Maldoon, M. T., Kearney, P. C., (1990). On-site treatment of pesticide waste and rinsate using ozone and biologically active soil. Environ Sci. Technol., 24, 745–749.

    Article  CAS  Google Scholar 

  • Straube, G., (1991). Microbial transformation of hexachlorocyclohexane. Zentralbl Mikrobiol., 146(5), 327–338.

    CAS  Google Scholar 

  • Sudo, M., Kunimatsu, T., Okubo, T., (2002). Concentration and loading of pesticide residue in lake Biwa basin (Japan). Water Res., 36(4), 315–329.

    Article  CAS  Google Scholar 

  • Tartakouvsky, B., Michotte, A., Cadieu, A., Lau, P. C. K., Hawari, J., Guiot, S. R., (2001). Degradation of aroclor 1242 in a single stage coupled anaerobic bioreactor. Water Res., 35(18), 4323–4330.

    Article  Google Scholar 

  • US EPA. (1992). Pesticide Fact Sheet Database, Washington, D.C.

  • Yu, J. J., (2002). Removal of organophosphate pesticides from wastewater by supercritical carbon dioxide extraction. Water Res., 36(4), 1095–1101.

    Article  CAS  Google Scholar 

  • Zacharias, B., Lang, E., Hanert, H. H., (1995). Biodegradation of chlorinated aromatic hydro-carbons in slowsand filters simulating conditions in contaminated soil-Pilot study for in situ cleaning of an industrial site., Water Res., 29(7), 1663–1671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jilani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jilani, S., Khan, M.A. Biodegradation of Cypermethrin by Pseudomonas in a batch activated sludge process. Int. J. Environ. Sci. Technol. 3, 371–380 (2006). https://doi.org/10.1007/BF03325946

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03325946

Keywords

Navigation