[go: up one dir, main page]

Skip to main content
Log in

Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion

Influencia del calentamiento de la caseína en preseneia de azúcares reductores sobre la solubilidad del Zn y su captación por células Caco-2

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of the heat treatment of casein in presence of reducing sugars on some aspects of Zn availability was investigated. Samples were prepared by mixing casein with glucose-fructose, and were used unprocessed (C) or heated (HC). Changes in Zn speciation after the in vitro digestion of the samples, both as part of a diet and in isolation, were studied. The uptake of soluble Zn from the digested samples was investigated in Caco-2 cells. After in vitro digestion, the percentage of precipitated Zn was significantly higher with the HC sample, both when digested alone and as a part of the diet. In assays with Caco-2 cells, a significant decrease in Zn uptake was observed when the uptake buffer contained the sample C digest, by comparison with the control buffer, without casein digest. When the digested heated mixture was added, Zn uptake by the cells was significantly lower than in either of the two other cases. It may be concluded that the heat treatment of casein in the presence of glucose-fructose has a negative effect on Zn availability because, after in vitro digestion, Zn insolubilization was enhanced and Zn uptake by the enterocyte was impaired, compared with the unheated mixture. In addition, the usefulness of Caco-2 cells in this kind of research has been shown.

Resumen

Se estudia el efecto del calentamineto de la caseína en presencia de azúcares reductores sobre algunos aspectos de la disponibilidad del Zn. Las muestras se preparan mezclando caseína con glucosa-fructosa y se ensayan sin calentar (C) y calentada (HC). En primer lugar, se investigan los cambios en la solubilidad del Zn tras la digestión in vitro de las muestras, aisladas o formando parte de una dieta. En segundo lugar, se llevan a cabo estudios de captación del Zn soluble, obtenido tras la digestión de las muestras aisladas, en células Caco-2. Tras la digestión in vitro, el porcentaje de Zn precipitado es significativamente superior con la muestra calentada, tanto digerida de forma aislada, como formando parte de la dieta. La adición a la solución de captación de la fracción soluble de los digeridos de las muestras HC y C produce un descenso significativo en la captación del Zn en las células Caco-2, más acusado en HC. Se puede concluir que el calentamiento de la caseína en presencia de glucosa-fructosa afecta negativamente la disponibilidad del Zn, porque, tras la digestión in vitro, favorece la insolubilización del elemento y disminuye su captación por el enterocito de forma aun más acusada que la misma mezcla sin tratar. Por otra parte, se comprueba la utilidad de las células Caco-2 en la realización de este tipo de estudios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, S. A., Vieira, N. E. and Yergey, A. L. (1990): J. Nutr., 120 (2), 1672–1676.

    Google Scholar 

  2. Aguirre, M. (1995): Utilización de minerales en dietas hipograsas y en preparados dietéticos empleados en regímenes de adelgazamiento. Ph. D. Thesis, Instituto de Nutrición y Bromatología (C.S.I.C.-U.C.M.), Madrid.

    Google Scholar 

  3. Andrieux, C. and Saquet, E. (1984), Reprod. Nutr. Develop., 24, 379–386.

    Article  CAS  Google Scholar 

  4. Aspe, T. (1992): Influencia del tratamiento térmico de la proteína dietética sobre biodisponibilidad de algunos minerales. Ph. D. Thesis, Instituto de Nutrición y Bromatología (C.S.I.C.-U.C.M.). Madrid.

    Google Scholar 

  5. Aspe, T., Vaquero, M. P. and Navarro, M. P. (1993): In “Bioavailability ’93. Nutritional, Chemical and Food Processing Implications of Nutrient Availability” Vol. 2 (U. Schlemmer, ed.). Ettlingen, Germany. pp. 68–71.

    Google Scholar 

  6. Blakeborough, P., Gurr, M. I. and Salter, D. N. (1986): Br. J. Nutr., 55, 209–217.

    Article  CAS  PubMed  Google Scholar 

  7. Bobilya, D., Briske-Anderson, M. and Reeves, P. (1993): Proc. Soc. Exp. Biol. Med., 202, 159–166.

    CAS  PubMed  Google Scholar 

  8. Brzozowska, A., Scinska, A., Witkowskw, J. and Roszkowski, W. (1989): In: “Nutrient availability: Chemical and biological aspects” (D. Southgate, I. Johnson and G. R. Fenwick, eds.). Royal Society of Chemistry, Thomas Graham House, Cambridge, England. pp. 206–208.

    Google Scholar 

  9. Ellwood, K. C., Chatzidakis, C. and Failla, M. L. (1993): Proc. Soc. Exp. Biol. Med., 202, 440–446.

    CAS  PubMed  Google Scholar 

  10. Evangelisti, F., Cacagno, C., Nardi, S. and Zunin, P. (1999): J. Dairy Res., 66, 237–243.

    Article  CAS  PubMed  Google Scholar 

  11. Finley, J. W., Briske-Anderson, M., Reeves, P. G. and Johnson, L. K. (1995): J. Nutr. Biochem., 6, 137–144.

    Article  Google Scholar 

  12. Finot, P. A. and Magnenat, E. (1981): In “Progress in Food and Nutrition Science Vol. 5, Maillard Reactions in Food” (C. Eriksson, ed.). Pergamon Press, Oxford. pp. 193–207.

    Google Scholar 

  13. Flynn, A. and Power, P. (1985): In “Developments in dairy chemistry-3. Lactose and minor constituents” (P. F. Fox, ed.). Elsevier, Applied Science Publishers, London. pp. 183–215.

    Google Scholar 

  14. Friedman, M. (1992): Annu. Rev. Nutr., 12, 119–137.

    Article  CAS  PubMed  Google Scholar 

  15. Furniss, D. E., Hurrell, R. F. and Finot, P. A. (1986): Acta Pharm. Toxicol., 59, S7, 188–191.

    CAS  Google Scholar 

  16. Furniss, D. E., Vuichoud, J., Finot, P. A. and Hurrell, R. F. (1989): Br. J. Nutr., 62, 739–749.

    Article  CAS  PubMed  Google Scholar 

  17. Gregor, J. L. and Emery, S. M. (1987): J. Agric. Food. Chem., 35, 551.

    Article  Google Scholar 

  18. Han, O., Failla, M. L., Hill, D., Morris, E. R. and Smith, C., Jr. (1994): J. Nutr., 124, 580–587.

    CAS  PubMed  Google Scholar 

  19. Hansen, M., Sandstrom, B. and Lonnerdal, B. (1996): Pediatr. Res., 40 (4), 547–52.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen, M., Sandstrom, B, Jense, M. and Sorensen, S. S. (1997): J. Pediatr. Gastroenterol. Nutr., 24, 56–62.

    Article  CAS  PubMed  Google Scholar 

  21. Harzer, G. and Kauer, H. (1982): Am. J. Clin. Nutr. 35, 981–987.

    CAS  PubMed  Google Scholar 

  22. Hazell, T. (1985): Wld. Rev. Nutr. Diet., 46, 1–123.

    CAS  Google Scholar 

  23. Hidalgo, I. J., Raub, T. J. and Borchardt, R. T. (1989): Gastroenterology, 96, 736–749.

    CAS  PubMed  Google Scholar 

  24. Homma, S., Aida, K. and Fujimaki, M. (1986): In “Amino Carbonyl Reactions in Food and Biological Systems” (M. Fufimaki, M. Namiki and H. Kato, eds.), Elsevier, Amsterdam, p 165.

    Google Scholar 

  25. Homma, S., Nakamura, Y., Asakura, T., Sekiguchi, N. and Murata, M. (1990): In “The Maillard Reaction in Food Processing, Human Nutrition and Physiology” (P. A. Finot, H. U. Aeschbacher, R. F. Hurrell and R. Liardon, eds.). Birkhauser, Basel, pp. 279–284.

    Google Scholar 

  26. Homma, S. and Murata, M. (1994): In “Maillard Reactions in Chemistry, Food and Health” (T. P. Labuza, G. A. Reineccius, V.M. Monnier, J. M. O’Brien and J. W. Baynes, eds.). Royal Society of Chemistry, London, p. 413.

    Google Scholar 

  27. Hurrell, R. F. (1984): In “Developmens in Food Proteins” Vol. 3 (B. J. F. Hudson, ed.) Applied Science Publishers, London. pp. 213–244.

    Google Scholar 

  28. Johnson, P. E., Lykken, G., Mahalko, J., Milne, D., Inman, L., Sandstead, H. H., García, W. J. and Inglett, G. E. (1981): In “The Maillard Reaction in Foods and Nutrition” (G. R. Waller and M. S. Feather, eds.). American Chemical Society, Washington DC. pp. 349–360.

    Google Scholar 

  29. Krone, C. A., Yeh, S. M. J. and Iwaoka, W. T. (1986): Environ. Health Perspect., 67, 75–88.

    Article  CAS  PubMed  Google Scholar 

  30. Lönnerdal, B., Keen, C. L. and Hurley, L. S. (1981): Ann. Rev. Nutr., 1, 149–174.

    Article  Google Scholar 

  31. Lönnerdal, B. (1997): Physiol. Rev., 77, 643–669.

    PubMed  Google Scholar 

  32. Lykken, G. I., Mahalko, J., Johnson, P. E., Milne, D., Sandstead, H. H., García, W. J., Dinitzis, F. R. and Inglett, G. E. (1986): J. Nutr., 116, 795–801.

    CAS  PubMed  Google Scholar 

  33. National Research Council. (1995): Nutrient requirements of domestic animals (4th ed.). National Academy Press. Washington D.C.

    Google Scholar 

  34. Navarro, P., Aspe, T. and Seiquer, I. (2000): J. Agric. Food. Chem., 48, 3589–3596.

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien, J. and Morrisey, P. A. (1989): Crit. Rev. Food Sci. Nutr., 28, 211–248.

    Article  PubMed  Google Scholar 

  36. O’Brien, J. and Morrisey, P. A. (1997): Food Chem., 58, 17–27.

    Article  Google Scholar 

  37. O’Brien, J., Morrisey, P. A. and Flynn, A. (1994). In: “Maillard Reaction in Chemistry, Food and Health” (T. P. Labuza, G.A. Reineccius, V. Monnier, J. O’Brien and J. Baynes, ed.). The Royal Society of Chemistry, Cambridge. pp. 397–401.

    Google Scholar 

  38. O’Brien, J. and Walker, R. (1988): Food Chem. Toxic., 26 (9), 775–783.

    Article  Google Scholar 

  39. Pinto, M., Robin-Leon, S., Appay, M., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assman, P., Haffen, K., Fogh, J. and Zweibaum, A. (1983): Biol. Cell., 47, 323–330.

    Google Scholar 

  40. Pizzoferrato, L., Manzi, P., Vivanti, V., Nicoletti, I., Corrandini, C. and Cogliandro, E. (1998): J. Food Prot., 61(2), 235–239.

    CAS  PubMed  Google Scholar 

  41. Raffaniello, R. D., Lee, S., Teichberg, S. and Wapnir, R. A. (1992): J. Cell. Physiol., 152, 356–361.

    Article  CAS  PubMed  Google Scholar 

  42. Scarino, M.L., Ferruzza, S., Ranaldi, G., Rossi, A. and Sambuy, Y. (1993): In “Bioavailability ’93. Nutritional, Chemical and Food Processing Implications of Nutrient Availability” Vol. 2 (U. Schlemmer, ed.). Ettlingen, Germany, pp. 113–118.

    Google Scholar 

  43. Seiquer, I., Delgado-Andrade, C. and Navarro, M. P. (2000): Proc. Nutr. Soc., 59, 134A.

    Google Scholar 

  44. Stegink, L. D., Freeman, J. B., Den-Besten, L. and Filer, L. J. (1981): In “Progress in Food and Nutrition Science. Vol. 5, Maillard Reactions in Food” (C. Eriksson, ed.). Pergamon Press, Oxford. pp. 265–278.

    Google Scholar 

  45. Whitelaw, M. L. and Weaver, C. M. (1988): J. Food Sci., 53, 1508–1510.

    Article  CAS  Google Scholar 

  46. Wiseman, J., Jagger, S., Cole, D. J. A. and Haresgin, W. (1991): Animal Prod., 53, 215–225.

    CAS  Google Scholar 

  47. Ziegler, E. E., Serfess, R. E., Baillie, R. A. and Nelson, S. E. (1993): FASEB J., 7, A201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Seiquer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiquer, I., Valverde, A., Delgado-Andrade, C. et al. Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion. J. Physiol. Biochem. 56, 237–246 (2000). https://doi.org/10.1007/BF03179792

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179792

Key words

Palabras clave

Navigation