References
[A] Atiyah, M.: On framings of 3-manifolds. Topology29, 1–7 (1990)
[AHLS] Atiyah, M.F., Hitchin, N., Lawrence, R., Segal, G.: Oxford seminar on Jones-Witten theory. Michaelmas term 1988
[Br] Brown, E.H.: Generalization of the Kervaire invariant. Ann. Math.95, 368–383 (1972)
[D1] Drinfel'd, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR283, 1060–1064 (1985)
[D2] Drinfel'd, V.G.: Quantum groups. Proc. Int. Cong. Math. Berkeley, Calif. 1986, pp. 798–820. Providence, RI: Am. Math. Soc. 1987
[Du] Durfee, A.: Bilinear and quadratic forms on torsion modules. Adv. Math.25, 133–164 (1977)
[FR] Fenn, R., Rourke, C.: On Kirby's calculus of links. Topology18, 1–15 (1979)
[FG] Freed, D.S., Gompf, R.E.: Computer calculation of Witten's 3-manifold invariant. (Preprint)
[FY] Freyd, P., Yetter, D.: Braided, compact, closed categories with applications to low dimensional topology. Adv. Math.77, 156–182 (1989)
[GJ] Goldschmidt, D., Jones, V.: Metaplectic links invariants. (to appear)
[Ji] Jimbo, M.: Aq-difference analogue ofU (G) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)
[J1] Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc.12, 103–111 (1985)
[J2] Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math.126, 335–388 (1987)
[Ka] Kaplan, S.: Constructing 4-manifolds with given almost framed boundaries. Trans. Am. Math. Soc.254, 237–263 (1979)
[Kf] Kauffman, L.H.: On Knots. (Ann. Math. Stud., vol. 115) Princeton: Princeton University Press 1987
[K1] Kirby, R.C.: A calculus for framed links inS 3. Invent. Math.45, 35–56 (1978)
[K2] Kirby, R.C.: The Topology of 4-Manifolds. (Lect. Notes Math., vol. 1374) Berlin Heidelberg New York: Springer 1989
[KM1] Kirby, R., Melvin, P.: Evaluations of new 3-manifold invariants. Notices Am. Math. Soc.10, Abstract 89T-57-254, 491 (1989)
[KM2] Kirby, R., Melvin, P.: Evaluations of the 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C). In: Geometry of Low-dimensional Manifolds. Durham 1989. (Lond. Math. Soc. Lect. Note Ser., vol. 151) Cambridge: Cambridge University Press 1990
[KM3] Kirby, R., Melvin, P.: Dedekind sums, signature defects and the signature cocycle. (Preprint)
[KM4] Kirby, R., Melvin, P.: Quantum invariants of lens spaces and a Dehn surgery formula. (in preparation)
[KT] Kirby, R.C., Taylor, L.R.: Pin structures on low dimensional manifolds. In: Geometry of Low-dimensional Manifolds. Durham 1989. (Lond. Math. Soc. Lect. Note Ser., vol. 151) Cambridge: Cambridge University Press 1990
[KiR] Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebraU q(sl2),q-orthogonal polynomials and invariants of links. Prepr. LOMI, E9 (1988)
[KP] Kneser, M., Puppe, D.: Quadratische Formen und Verschlingungsinvarianten von Knoten. Math. Z.58, 376–384 (1953)
[KoS] Ko, K.H., Smolinsky, L.: A combinatorial matrix in 3-manifold theory. Pac. J. Math. (to appear)
[KuR] Kulish, P.P., Reshetikhin, N.Yu.: J. Sov. Math.23, 2435 (1983)
[La] Lang, S.: Algebraic Number Theory. Berlin Heidelberg New York: Springer 1986
[L1] Lickorish, W.B.R.: A representation of orientable, combinatorial 3-manifolds. Ann. Math.76, 531–540 (1962)
[L2] Lickorish, W.B.R.: Polynomials for links. Bull. Lond. Math. Soc.20, 558–588 (1988)
[L3] Lickorish, W.B.R.: Invariants for 3-manifolds derived from the combinatorics of the Jones polynomial. Pac. J. Math. (to appear)
[L4] Lickorish, W.B.R.: 3-manifolds and the Temperley-Lieb algebra. (to appear)
[L5] Lickorish, W.B.R.: Calculations with the Temperley-Lieb algebra. (Preprint)
[LM1] Lickorish, W.B.R., Millett, K.C.: Some evaluations of link polynomials. Comment. Math. Helv.61, 349–359 (1986)
[Lp] Lipson, A.S.: An evaluation of a link polynomial. Math. Proc. Camb. Phil. Soc.100, 361–364 (1986)
[Lu] Lustig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math.70, 237–249 (1988)
[Ma] Matsumoto, Y.: An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin. In: Guillou, L., Marin, A. (eds.) A la Recherche de la Topologie Perdue (pp. 119–140). Boston: Birkhauser 1986
[MK] Melvin, P., Kazez, W.: 3-dimensional bordism. Mich. Math. J.36, 251–260 (1989)
[MH] Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Berlin Heidelberg New York: Springer 1973
[MS] Morton, H.R., Strickland, P.: Jones polynomial invariants for knots and satellites. (Preprint)
[Mu] Murakami, H.: A recursive calculation of the Arf invariant of a link. J. Math. Soc. Japan38, 335–338 (1986)
[RT1] Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.127, 1–26 (1990)
[RT2] Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)
[Sk] Sklyanin, E.K.: On an algebra generated by quadratic relations. Usp. Mat. Nauk40, 214 (1985)
[Tr] Trace, B.: On the Riedemeister moves of a classical knot. Proc. Am. Math. Soc.89, 722–724 (1983)
[T1] Turaev, V.G.: Spin structures on three-dimensional manifolds. Math. USSR, Sb.48, 65–79 (1984)
[T2] Turaev, V.G.: The Conway and Kauffman modules of the solid torus with an appendix on the operator invariants of tangles. Prepr. LOMI (1988)
[T3] Turaev, V.G.: State sum models in low-dimensional topology. (Preprint 1990)
[Wa] Wallace, A.H.: Modifications and cobounding manifolds. Can. J. Math.12, 503–528 (1960)
[Wk] Wilkens, D.L.: Closed (s−1)-connected (2s+1)-manifolds,s=3, 7. Bull. Lond. Math. Soc.4, 27–31 (1972)
[Wt] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1989)
[Wo] Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Reading, Mass. Addison-Wesley 1988
[Ye] Yetter, D.N.: Markov algebras. In: Braids. (Contemp. Math., vol. 78) Providence, RI: Am. Math. Soc. 1988
Author information
Authors and Affiliations
Additional information
Oblatum 24-I-1991
Rights and permissions
About this article
Cite this article
Kirby, R., Melvin, P. The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C). Invent Math 105, 473–545 (1991). https://doi.org/10.1007/BF01232277
Issue Date:
DOI: https://doi.org/10.1007/BF01232277