[go: up one dir, main page]

Skip to main content
Log in

Trajectory divergence for coupled relaxation oscillators: Measurements and models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The exponential divergence of nearby phase space trajectories is a hallmark of nonperiodic (chaotic) behavior in dynamical systems. We present the first laboratory of measurements of divergence rates (or characteristic exponents), using a system of coupled tunnel diode relaxation oscillators. This property of sensitive dependence on initial conditions is reliably associated with broadband spectra, and both methods are used to characterize the motion as a function of the coupling strength and natural frequency ratio of the two oscillators. A simple piecewise linear model correctly predicts the major periodic and non-periodic regions of the parameter space, thus confirming that the chaotic behavior involves only a few degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Zaslavsky and B. V. Chirikov,Usp. Fiz. Nauk 14:549 (1972).

    Google Scholar 

  2. D. Ruelle,Ann. N.Y. Acad. Sci. 316:408 (1979).

    Google Scholar 

  3. G. Benettin, L. Galgani, and J.-M. Strelcyn,Phys. Rev. A 14:2338 (1976).

    Google Scholar 

  4. A. B. Rechester, M. N. Rosenbluth, and R. B. White,Phys. Rev. Lett. 42:1247 (1979).

    Google Scholar 

  5. I. Shimada and T. Nagashima,Prog. Theor. Phys. 61:1605 (1979).

    Google Scholar 

  6. S. D. Feit,Commun. Math. Phys. 61:249 (1978).

    Google Scholar 

  7. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series, preprint.

  8. J. P. Gollub, T. O. Brunner, and B. G. Danly,Science 200:48 (1978).

    Google Scholar 

  9. J. P. Gollub and S. V. Benson,J. Fluid Mech., to appear.

  10. A. S. Monin,Sov. Phys.—Usp. 21:429 (1978).

    Google Scholar 

  11. G. Ahlers and R. P. Behringer,Prog. Theor. Phys. Suppl. 64:186 (1979).

    Google Scholar 

  12. H. L. Swinney and J. P. Gollub, eds.,Hydrodynamic Instabilities and the Transition to Turbulence (Springer-Verlag, Berlin, New York, 1980).

    Google Scholar 

  13. M. I. Rabinovich,Sov. Phys.—Usp. 21:443 (1978).

    Google Scholar 

  14. A. S. Wightman, inStatistical Mechanics at the Turn of the Decade, E. G. D. Cohen, ed. (Marcel Dekker, New York, 1971), pp. 1–32.

    Google Scholar 

  15. R. M. May,Nature 261:459 (1976).

    Google Scholar 

  16. R. K. Otnes and L. Enochson,Digital Time Series Analysis (Wiley, New York, 1972).

    Google Scholar 

  17. B. V. Chirikov,Phys. Rep. 52:265 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the National Science Foundation and the Research Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollub, J.P., Romer, E.J. & Socolar, J.E. Trajectory divergence for coupled relaxation oscillators: Measurements and models. J Stat Phys 23, 321–333 (1980). https://doi.org/10.1007/BF01011372

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011372

Key words