[go: up one dir, main page]

Skip to main content

Verifying Chinese Train Control System under a Combined Scenario by Theorem Proving

  • Conference paper
Verified Software: Theories, Tools, Experiments (VSTTE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8164))

Abstract

In this paper, we investigate how to formalize and verify the System Requirements Specification (SRS) of Chinese Train Control System Level 3 (CTCS-3), which includes a set of basic operational scenarios that cooperate with each other to achieve the desired behavior of trains. It is absolutely necessary to prove that the cooperation of basic scenarios indeed completes the required behavior. As a case study, a combined scenario with several basic scenarios integrated is studied in this paper. We model each scenario as a Hybrid CSP (HCSP) process, and specify its properties using Hybrid Hoare Logic (HHL). Given such an annotated HCSP model, the deductive verification of conformance of the model to the properties is then carried out. For the purpose, we implement a theorem prover of HHL in Isabelle/HOL, with which the process including modelling and verification of annotated HCSP models can be mechanized. In particular, we provide a machine-checked proof for the combined scenario, with the result indicating a design error in SRS of CTCS-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

    Google Scholar 

  3. Heilmann, S.T.: Proof Support for Duration Calculus. PhD thesis, Technical University of Denmark (1999)

    Google Scholar 

  4. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE Computer Society (1996)

    Google Scholar 

  5. Hoenicke, J., Olderog, E.: CSP-OZ-DC: A combination of specification techniques for processes, data and time. Nord. J. Comput. 9(4), 301–334 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: EMSOFT 2011, pp. 97–106. ACM (2011)

    Google Scholar 

  8. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Moszkowski, B.C., Manna, Z.: Reasoning in interval temporal logic. In: Clarke, E., Kozen, D. (eds.) Logic of Programs, vol. 164, pp. 371–382. Springer, Heidelberg (1983)

    Google Scholar 

  11. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41(2), 143–189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Rasmussen, T.M.: Interval Logic - Proof Theory and Theorem Proving. PhD thesis, Technical University of Denmark (2002)

    Google Scholar 

  14. Skakkebaek, J.U., Shankar, N.: Towards a duration calculus proof assistant in PVS. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 660–679. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Zhang, S.: CTCS-3 Technology Specification. China Railway Publishing House (2008)

    Google Scholar 

  17. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. Series: Monographs in Theoretical Computer Science. An EATCS Series. Springer (2004)

    Google Scholar 

  18. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, C., Li, X.: A mean-value duration calculus. In: A Classical Mind, Essays in Honour of C.A.R. Hoare, pp. 432–451. Prentice-Hall International (1994)

    Google Scholar 

  20. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, L. et al. (2014). Verifying Chinese Train Control System under a Combined Scenario by Theorem Proving. In: Cohen, E., Rybalchenko, A. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2013. Lecture Notes in Computer Science, vol 8164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54108-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54108-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54107-0

  • Online ISBN: 978-3-642-54108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics