[go: up one dir, main page]

Skip to main content

Learning with Kernels in Description Logics

  • Conference paper
Inductive Logic Programming (ILP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5194))

Included in the following conference series:

  • 1426 Accesses

Abstract

We tackle the problem of statistical learning in the standard knowledge base representations for the Semantic Web which are ultimately expressed in description Logics. Specifically, in our method a kernel functions for the \(\mathcal{ALCN}\) logic integrates with a support vector machine which enables the usage of statistical learning with reference representations. Experiments where performed in which kernel classification is applied to the tasks of resource retrieval and query answering on OWL ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning, KR 2002, pp. 203–214. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  4. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation And Applications. IOS Press, Amsterdam (2005)

    Google Scholar 

  5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121–133. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  6. Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)

    Google Scholar 

  7. d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Google Scholar 

  9. Fanizzi, N., d’Amato, C.: A declarative kernel for \(\mathcal{ALC}\) concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Machine Learning 57(3), 205–232 (2004)

    Article  MATH  Google Scholar 

  11. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California – Santa Cruz (1999)

    Google Scholar 

  12. Horrocks, I.R., Li, L., Turi, D., Bechhofer, S.K.: The instance store: DL reasoning with large numbers of individuals. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 Description Logic Workshop, DL 2004. CEUR Workshop Proceedings, vol. 104, pp. 31–40. CEUR (2004)

    Google Scholar 

  13. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article  MATH  Google Scholar 

  14. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\cal ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Filip Železný Nada Lavrač

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., d’Amato, C., Esposito, F. (2008). Learning with Kernels in Description Logics. In: Železný, F., Lavrač, N. (eds) Inductive Logic Programming. ILP 2008. Lecture Notes in Computer Science(), vol 5194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85928-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85928-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85927-7

  • Online ISBN: 978-3-540-85928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics