Abstract
We tackle the problem of statistical learning in the standard knowledge base representations for the Semantic Web which are ultimately expressed in description Logics. Specifically, in our method a kernel functions for the \(\mathcal{ALCN}\) logic integrates with a support vector machine which enables the usage of statistical learning with reference representations. Experiments where performed in which kernel classification is applied to the tasks of resource retrieval and query answering on OWL ontologies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)
Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning, KR 2002, pp. 203–214. Morgan Kaufmann, San Francisco (2002)
Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation And Applications. IOS Press, Amsterdam (2005)
Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121–133. Morgan Kaufmann, San Francisco (1994)
Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)
d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)
Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)
Fanizzi, N., d’Amato, C.: A declarative kernel for \(\mathcal{ALC}\) concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)
Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Machine Learning 57(3), 205–232 (2004)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California – Santa Cruz (1999)
Horrocks, I.R., Li, L., Turi, D., Bechhofer, S.K.: The instance store: DL reasoning with large numbers of individuals. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 Description Logic Workshop, DL 2004. CEUR Workshop Proceedings, vol. 104, pp. 31–40. CEUR (2004)
Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)
Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\cal ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fanizzi, N., d’Amato, C., Esposito, F. (2008). Learning with Kernels in Description Logics. In: Železný, F., Lavrač, N. (eds) Inductive Logic Programming. ILP 2008. Lecture Notes in Computer Science(), vol 5194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85928-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-85928-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85927-7
Online ISBN: 978-3-540-85928-4
eBook Packages: Computer ScienceComputer Science (R0)