Abstract
Location based social networks such as Swarm provide a rich source of information on urban functions and city dynamics. Users voluntarily check-in at places they visit using a mobile application. Analysis of data created by check-ins can give insight into user’s mobility patterns. This study uses location-sharing data from Swarm to explore spatio-temporal and geo-temporal patterns within Melbourne city. Descriptive statistical analyses using SPSS on check-in data were performed to reveal meaningful trends and to attain a deeper understanding of human mobility patterns in the city. The results showed that mobility patterns vary based on gender and venue category. Furthermore, the patterns are different during different days of a week as well as at different times of a day but are not necessarily influenced by weather.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van Zanten, B.T., Van Berkel, D.B., Meentemeyer, R.K., Smith, J.W., Tieskens, K.F., Verburg, P.H.: Continental-scale quantification of landscape values using social media data. In: Proceedings of the National Academy of Sciences, pp. 12974–12979 (2016)
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. arXiv preprint arXiv:0806.1256 (2008)
Colombo, G.B., Chorley, M.J., Williams, M.J., Allen, S.M., Whitaker, R.M.: You are where you eat: foursquare checkins as indicators of human mobility and behaviour. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 217–222. IEEE (2012)
Fossen, B.L., Schweidel, D.A.: Social TV: how social media activity interacts with TV advertising. GfK Mark. Intell. Rev. 9(2), 31–36 (2017)
Oh, C., Yergeau, S.: Social capital, social media, and TV ratings. Int. J. Bus. Inf. Syst. 24(2), 242–260 (2017)
Ruths, D., Pfeffer, J.: Social media for large studies of behavior. Science 346(6213), 1063–1064 (2014)
Weller, K., Strohmaier, M.: Social media in academia: how the social web is changing academic practice and becoming a new source for research data. IT-Inf. Technol. 56(5), 203–206 (2014)
Zook, M.A., Graham, M.: Mapping DigiPlace: geocoded internet data and the representation of place. Environ. Plann. B: Plann. Des. 34(3), 466–482 (2007)
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8
Japkowicz, N., Stefanowski, J.: Big Data Analysis: New Algorithms for a New Society. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-26989-4
https://foursquare.com/about. Accessed 23 Oct 2017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Singh, R., Zhang, Y., Wang, H. (2018). Exploring Human Mobility Patterns in Melbourne Using Social Media Data. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds) Databases Theory and Applications. ADC 2018. Lecture Notes in Computer Science(), vol 10837. Springer, Cham. https://doi.org/10.1007/978-3-319-92013-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-92013-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92012-2
Online ISBN: 978-3-319-92013-9
eBook Packages: Computer ScienceComputer Science (R0)