[go: up one dir, main page]

Skip to main content

Hybrid Cuckoo Search Based Evolutionary Vector Quantization for Image Compression

  • Chapter
  • First Online:
Artificial Intelligence and Computer Vision

Part of the book series: Studies in Computational Intelligence ((SCI,volume 672 ))

  • 1992 Accesses

Abstract

Vector quantization (VQ) is the technique of image compression that aims to find the closest codebook by training test images. Linde Buzo and Gray (LBG) algorithm is the simplest technique of VQ but doesn’t guarantee optimum codebook. So, researchers are adapting the applications of optimization techniques for optimizing the codebook. Firefly and Cuckoo search (CS) generate a near global codebook, but undergoes problem when non-availability of brighter fireflies in search space and fixed tuning parameters for cuckoo search. Hence a Hybrid Cuckoo Search (HCS) algorithm is proposed that optimizes the LBG codebook with less convergence time by taking McCulloch’s algorithm based levy flight distribution function and variant of searching parameters (mutation probability and step of the walk). McCulloch’s algorithm helps the codebook in the direction of the global codebook. The variation in the parameters of HCS prevents the algorithm from being trapped in the local optimum. Performance of HCS was tested on four benchmark functions and compared with other metaheuristic algorithms. Practically, it is observed that the Hybrid Cuckoo Search algorithm has high peak signal to noise ratio and a fitness function compared to LBG, PSO-LBG, FA-LBG and CS-LBG. The convergence time of HCS-LBG is 1.115 times better to CS-LBG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantize design. IEEE Trans. Commun. 28(1), 84–95 (1980)

    Article  Google Scholar 

  2. G. Patane, M. Russo, The enhanced LBG algorithm. Neural Netw. 14(9), 1219–1237 (2002)

    Article  Google Scholar 

  3. K.H. Jung, C.W. Lee, Image compression using projection vector quantization with quad tree decomposition. Signal Process. Image Commun. 3(5), 379–386 (1996)

    Article  Google Scholar 

  4. G.R. Canta, G. Poggi, Compression of multispectral images by address-predictive vector quantization. Signal Process. Image Commun. 11(2), 147–159 (1997)

    Article  Google Scholar 

  5. Y.C. Hu, C.C. Chang, Quad tree-segmented image coding schemes using vector quantization and block truncation coding. Optim. Eng. 39(2), 464–471 (2000)

    Article  Google Scholar 

  6. K. Sasazaki, S. Saga, J. Maeda, Y. Suzuki, Vector quantization of images with variable block size. Appl. Soft Comput. 8(1), 634–645 (2008)

    Article  Google Scholar 

  7. D. Tsolakis, G.E. Tsekouras, J. Tsimikas, Fuzzy vector quantization for image compression based on competitive agglomeration and a novel codeword migration strategy. Eng. Appl. Artif. Intell. 25(6), 1212–1225 (2012)

    Article  Google Scholar 

  8. G.E. Tsekouras, M. Antonios, C. Anagnostopoulos, D. Gavalas, D. Economou, Improved batch fuzzy learning vector quantization for image compression. Inf. Sci. 178(20), 3895–3907 (2008)

    Article  MathSciNet  Google Scholar 

  9. D. Comaniciu, R. Grisel, Image coding using transform vector quantization with training set synthesis. Signal Process. Image Video Coding 82(11), 1649–1663 (2002)

    MATH  Google Scholar 

  10. X. Wang, J. Meng, A 2-D ECG compression algorithm based on wavelet transform and vector quantization. Digit. Signal Proc. 18(2), 179–188 (2008)

    Article  Google Scholar 

  11. C.C. Chang, Y.C. Li, J.B. Yeh, Fast codebook search algorithms based on tree-structured vector quantization. Pattern Recogn. Lett. 27(10), 1077–1086 (2006)

    Article  Google Scholar 

  12. A. Rajpoot, A. Hussain, K, Saleem, Q. Qureshi, A novel image coding algorithm using ant colony system vector quantization, in International Workshop on Systems, Signals and Image Processing (IWSSIP 2004), Poznan, Poland (2004)

    Google Scholar 

  13. C.W. Tsaia, S.P. Tsengb, C.S. Yangc, M.C. Chiangb, PREACO: a fast ant colony optimization for codebook generation. Appl. Soft Comput. 13(6), 3008–3020 (2013)

    Article  Google Scholar 

  14. Q. Chen, J.G. Yang, J. Gou, Image compression method by using improved PSO vector quantization, in Advances in Natural Computation, First International Conference on Neural Computation (ICNC 2005), Lecture Notes on Computer Science, vol. 3612, pp. 490–495 (2005)

    Google Scholar 

  15. H.M. Feng, C.Y. Chen, F. Ye, Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression. Expert Syst. Appl. 32(1), 213–222 (2007)

    Article  Google Scholar 

  16. Y. Wang, X.Y. Feng, Y.X. Huang, D.B. Pu, W.G. Zhou, Y.C. Liang, A novel quantum swarm evolutionary algorithm and its applications. Neurocomputing 70(4), 633–640 (2007)

    Article  Google Scholar 

  17. G. Poggi, A.R.P. Ragozini, “Tree-structured product-codebook vector quantization. Signal Process. Image Commun. 16(20), 421–430 (2001)

    Article  Google Scholar 

  18. Y.C. Hu, B.H. Su, C. Tsou Chiang, Fast VQ codebook search for gray scale image coding. Image Vis. Comput. 26(5), 657–666 (2008)

    Article  Google Scholar 

  19. M.H. Horng, T.W. Jiang, Image vector quantization algorithm via honey bee mating optimization. Expert Syst. Appl. 38(3), 1382–1392 (2011)

    Article  Google Scholar 

  20. M.H. Horng, Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)

    Article  MathSciNet  Google Scholar 

  21. K. Chiranjeevi, J. Umaranjan, Modified firefly algorithm (MFA) based vector quantization for image compression, in Proceedings of the International Conference on Computational Intelligence in Data Mining (ICCIDM-2015) (Springer, 2015)

    Google Scholar 

  22. K. Chiranjeevi, J. Umaranjan, Fast vector quantization using a Bat algorithm for image compression. Eng. Sci. Technol. Int. J. 19, 769–781 (2016)

    Article  Google Scholar 

  23. A.H. Abouali, Object-based VQ for image compression. Ain Shams Eng. J. 6(1), 211–216 (2015)

    Article  Google Scholar 

  24. J. Kennedy, R.C. Eberhart, A new optimizer using particle swarm theory, in Proceedings of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  25. Y. Zhao, A. Fang, K. Wang, H. Pang, Multilevel minimum cross entropy threshold selection based on quantum particle swarm optimization, in International Conference on Software Engineering Artificial Intelligence, Networking and Parallel/Distributed Computing, vol. 2, pp. 65–69 (2007)

    Google Scholar 

  26. X.S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver Press, 2008)

    Google Scholar 

  27. X.S. Yang, S. Deb, Cuckoo search via levy flights, in Proceedings of the World Congress on Nature and Biologically Inspired Computing, vol. 4, pp. 210–214 (2009)

    Google Scholar 

  28. C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  29. C. Brown, L.S. Liebovitch, R. Glendon, L´evy flights in Dobe Ju/’hoansi foraging patterns. Hum. Ecol. 35(1), 129–138 (2007)

    Article  Google Scholar 

  30. D.P. Rini, S.M. Shamsuddin, S.S. Yuhaniz, Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl. 14(1), 0975–8887 (2011)

    Google Scholar 

  31. Q. Bai, Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3(1), 180–184 (2010)

    Google Scholar 

  32. H. Soneji, R.C. Sanghvi, Towards the improvement of Cuckoo search algorithm, in IEEE 2nd World Congress on Information and Communication Technologies (WICT-2012), pp. 878–883 (2012)

    Google Scholar 

  33. E. Valian, S. Tavakoli, S. Mohanna, A. Haghi, Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 64(1), 459–468 (2013)

    Article  Google Scholar 

  34. T. Back, H.P. Schwefel, An overview of evolutionary algorithm for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karri Chiranjeevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiranjeevi, K., Jena, U., Prasad, P.M.K. (2017). Hybrid Cuckoo Search Based Evolutionary Vector Quantization for Image Compression. In: Lu, H., Li, Y. (eds) Artificial Intelligence and Computer Vision. Studies in Computational Intelligence, vol 672 . Springer, Cham. https://doi.org/10.1007/978-3-319-46245-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46245-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46244-8

  • Online ISBN: 978-3-319-46245-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics