[go: up one dir, main page]

Skip to main content

Artificial Intelligence-based Internet of Things for Industry 5.0

  • Chapter
  • First Online:
Artificial Intelligence-based Internet of Things Systems

Part of the book series: Internet of Things ((ITTCC))

  • 2831 Accesses

Abstract

In Industry 5.0 paradigm, AI-based systems are the essential component for the Internet of Things. In most applications, Industry 5.0 showed a significant connection between intelligent systems and humans through accurate manufacturing automation with critical thinking skills. Also, Industry 5.0 brings several competent tools that help organizations work inexpensively and instantly change without any principal investment. In recent years, smart devices, wireless communication, and sensor nodes have made considerable advances, making the Internet of Things (IoT) ecosystems. The Internet of Things (IoT) is a network of interconnected, Internet-connected devices that can capture and transmit data without the need for human interaction over a wireless network. With the introduction of IoT, human beings take some relaxed and unburden feelings. IoT devices enable users to obtain information even in rural surroundings and prepare reports without restrictions. In addition, they accurately guide human beings with intelligent judgments via communication, as mentioned earlier, technologies. Numerous connected devices collect a considerable quantity of raw sensed data, where it needs pre-processing. However, only it turns into something valuable because of IoT devices’ adequate resources entailed to edge computing. Artificial intelligence-based algorithms are the necessary means for information inference in edge computing. Besides, the sensed data accumulated from IoT applications are generally unstructured and need further analysis, where AI-based models help extract relevant information.

Furthermore, transmitting data from device to device, there is a chance for malicious attacks. Hence, this chapter explores Industry 5.0, IoT architecture, and AI-based IoT; we analyze IoT network’s technical details; communication enables technologies. Then we discussed various AI-based technologies integrated into IoT, AI-based tools, edge computing, and trust models for IoT appliances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, S. K., Bae, M., & Kim, H. (2017). Future of IoT networks: A survey. Applied Sciences, 2017(7), 1072. https://doi.org/10.3390/app7101072

    Article  Google Scholar 

  2. Garcia, C. G., Nunez-Valdez, E. R., Garcia-Diaz, V., PelayoGBustelo, B. C., & Lovelle, J. M. C. (2018). A review of artificial intelligence in the internet of things. International Journal of Interactive Multimedia and Artificial Intelligence, 5(4).

    Google Scholar 

  3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. Ieee Communication Surveys & Tutorials, 17(4).

    Google Scholar 

  4. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. Ieee Internet of Things Journal, 4(5).

    Google Scholar 

  5. Samie, F., Bauer, L., & Henkel, J. (2019). From cloud down to things: An overview of machine learning in internet of things. Ieee Internet of Things Journal, 6(3, June).

    Google Scholar 

  6. Altexsoft. (2020). IoT architecture: The pathway from physical signals to business decisions. https://www.altexsoft.com/blog/iot-architecture-layers-components/

  7. Chander, G. B., & Kumaravelan, G. (2018). Introduction to wireless sensor networks. Soft Computing in Wireless Sensor Networks, 1.

    Google Scholar 

  8. Chander, B., & Kumaravelan, G. (2020). Internet of things: Foundation. In Principles of Internet of Things (IoT) ecosystem: Insight paradigm (pp. 3–33). Springer.

    Chapter  Google Scholar 

  9. Gopalakrishnan, K. (2020). Security vulnerabilities and issues of traditional wireless sensor networks in IoT. In Principles of Internet of Things (IoT) ecosystem: Insight paradigm (pp. 519–549). Springer.

    Google Scholar 

  10. Lin, Y. C. (2017). Development of Advanced Manufacturing Cloud of Things (AMCoT) - A intelligence manufacturing platform. IEEE Robotics and Automation Letters, 2(1), 1809–1816.

    Article  Google Scholar 

  11. Chen, C. C. (2018). A novel automated construction scheme for efficiently developing cloud manufacturing services. IEEE Robotics & Automation Letters, 3(3), 1378–1385. https://doi.org/10.1109/LRA.2018.2799420

    Article  Google Scholar 

  12. Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya, R. (2015). iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Journal Software: Practice and Experience, 47(9), 1275–1296.

    Google Scholar 

  13. Zhou, B., & Buyya, R. (2018). Augmentation techni9u es for mobile cloud computing: A taxonomy, survey, and future directions. ACM Computing Surveys (CSUR)., 51(1), 1–38.

    Article  Google Scholar 

  14. Ranjan, R., Rana, O., Nepal, S., Yousif, M., James, P., & Wen, Z. (2018). The next grand challenges: Integrating the Internet of Things and data science. IEEE Cloud Computing.

    Google Scholar 

  15. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  16. Ungureanu, A. V. (2020). The Transition from Industry 4.0 to Industry 5.0. The 4Cs of the Global Economic Change. In C. Nastase (Ed.), Lumen proceedings: Vol. 13 (pp. 70–81). 16th Economic International Conference NCOE 4.0 2020.

    Google Scholar 

  17. Adi, E., Anwar, A., Baig, Z., & Zeadally, S. (2020). Machine learning and data analytics for the IoT. Neural Computing and Applications, 32, 16205–16233.

    Article  Google Scholar 

  18. Sharma, I., Garg, I., & Kiran, D. (2020). Industry 5.0 and smart cities: A futuristic approach. European Journal of Molecular & Clinical Medicine, 07(08), 2515–8260.

    Google Scholar 

  19. Aslam, F., Wang, A., Li, M., & Rehman, K. U. (2020). Innovation in the era of IoT and industry 5.0: Absolute Innovation Management (AIM) Framework. Information, 11, 124. https://doi.org/10.3390/info11020124

    Article  Google Scholar 

  20. Nahavandi, S. (2020). Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. https://doi.org/10.3390/su11164371

    Article  Google Scholar 

  21. Qiu, T., Zhao, Z., Zhang, T., Chen, C., & Chen, C. L. P. (2019). Underwater internet of things in smart ocean: System architecture and open issues. IEEE Transactions On Industrial Informatics, 1551–3203. (c) IEEE.

    Google Scholar 

  22. Özdemir, V., & Hekim, N. (2018). Birth of industry 5.0: Making sense of big data with artificial intelligence, ‘The Internet of Things’ and next-generation technology policy. OMICS A Journal of Integrative Biology, 22(1) Mary Ann Liebert, Inc. https://doi.org/10.1089/omi.2017.0194

  23. Chander, B., & Kumaravelan, G. (2021). Cyber security with AI—Part I. In The "Essence" of network security: An end-to-end panorama (pp. 147–171). Springer.

    Chapter  Google Scholar 

  24. Skobelev, P. O., & Borovik, S. Y. (2017). On the way from Industry 4.0 to Industry 5.0: From digital manufacturing to digital society. International Science Journal, 2(6), 307e311.

    Google Scholar 

  25. Pflanzner, T., & Kertesz, A. (2018). A taxonomy and survey of IoT cloud applications. EAI Endorsed Transactions on Internet of Things, 3(12).

    Google Scholar 

  26. Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Elsevier, Business Horizons, 58, 431–440.

    Article  Google Scholar 

  27. Uviase, O., & Kotonya, G. (2018). IoT architectural framework: Connection and integration framework for IoT systems. In D. Pianini & G. Salvaneschi (Eds.), First workshop on Architectures, Languages, and Paradigms for IoT EPTCS 264, (pp. 1–17). https://doi.org/10.4204/EPTCS.264.1.

  28. Tiwary, A., Mahato, M., & Chidar, A. (2018). Internet of Things (IoT): Research, Architectures and Applications. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(3), 23–27, ISSN: 2454-4248.

    Google Scholar 

  29. Patel, K. K., & Patel, S. M. (2016). Internet of things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges. International Journal of Engineering Science and Computing, 6(5).

    Google Scholar 

  30. Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning and artificial intelligence in next-generation wireless networks. IEEE Access, 6, 32328–32338. https://doi.org/10.1109/ACCESS.2018.2837692

    Article  Google Scholar 

  31. Mohammadi, M., AI-Fuqaha, A., & SamehSorour, M. G. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923–2960.

    Article  Google Scholar 

  32. Meruje, M., GwaniSamaila, M., Virginia, N. L., Franqueira, M. M. F., & MoraisInâcio, P. R. (2018). A tutorial introduction to IoT design and prototyping with examples, Internet of Things A to Z: Technologies and applications. In Q. F. Hassan (Ed.), The Institute of Electrical and Electronics Engineers, Inc (1st ed.). Wiley & Sons, Inc.

    Google Scholar 

  33. Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400. c 2013 PAGE Publications.

    Article  Google Scholar 

  34. Davenport, T. H. (2018). From analytics to artificial Intelligence. Journal of Business Analytics, 1, 2,73–2,80. https://doi.org/10.1080/2573234X.2018.1543535

    Article  Google Scholar 

  35. Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of Things. ET Research Journals, 1–11.

    Google Scholar 

  36. Lv, Z., Han, Y., Singh, A. K., Manogaran, G., & Haibin. (2020). Trustworthiness in industrial IoT systems based on artificial intelligence. IEEE, 1551–3203.

    Google Scholar 

  37. Davenport, T. H. (2018a). The AI advantage. MIT Press.

    Book  Google Scholar 

  38. Davenport, T. H., & Harris, J. G. (2017). Competing on analytics. Harvard Business Review Press (revised and updated).

    Google Scholar 

  39. Davenport, T. H., & Kirby, J. (2016). Only humans need to apply: Winners and losers in the age of smart machines. Harper Business.

    Google Scholar 

  40. Davenport, T. H., & Mahidhar, V. (2018). What‘s your cognitive strategy? MIT Sloan Management Review, (Summer). Retrieved from https://sIoanreview.mit.edu/article/whats-your-cognitive-strategy/

  41. Jha, S., & Seshia, S. A. (2017). A Theory of Formal Synthesis via Inductive Learning. Acta Informatica, 54(7), 693–726.

    Article  MathSciNet  Google Scholar 

  42. Hassan, Q. F., Khan, A. R., & Madani, S. A. (2017). Internet of things: Challenges, advances, and applications. CRC Press.

    Book  Google Scholar 

  43. Fortino, G., & Trunfio, P. (2014). Internet of things based on smart objects: Technology, middleware, and applications. Springer.

    Book  Google Scholar 

  44. Yang, L. T., Di Martino, B., & Zhang, Q. (2017). Internet of everything. Mobile Information Systems, 8, 201.

    Google Scholar 

  45. Chander, B. (2020). Clustering and Bayesian networks. In Handbook of research on big data clustering and machine learning (pp. 50–73). IGI Global.

    Chapter  Google Scholar 

  46. Yang, Q., Yang, L., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology, 10: 2, Article 12 (February 2019), 19 pages. https://doi.org/10.1145/3298981

  47. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. in IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749

    Article  Google Scholar 

  48. Wu, Q., He, K., & Chen, X. (2020). Personalized federated learning for intelligent IoT applications: A cloud-edge based framework. IEEE Open Journal of the Computer Society, 1, 35–44. https://doi.org/10.1109/OJCS.2020.2993259

    Article  Google Scholar 

  49. Pang, J., Huang, Y., Xie, Z., Han, Q., & Cai, Z. (2021). Realizing the heterogeneity: A self-organized federated learning framework for IoT. IEEE Internet of Things Journal, 8(5), 3088–3098. https://doi.org/10.1109/JIOT.2020.3007662

    Article  Google Scholar 

  50. https://sensiml.com/

  51. https://www.vertica.com/

  52. Hirsch, M., Mateos, C., Rodriguez, J. M., & Zunino, A. (2020). DewSim: A trace-driven toolkit for simulating mobile device clusters in Dew computing environments. Softw: Pract Exper., 50, 688–718. https://doi.org/10.1002/spe.2696

    Article  Google Scholar 

  53. Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Georgakopoulos, D., & Ranjan, R. (2017). Iotsim: A simulator for analysing iot applications. Journal of Systems Architecture, 72, 93–107.

    Article  Google Scholar 

  54. Jha, D. N., Alwasel, K., Alshoshan, A., Huang, X., Naha, R. K., Battula, S. K., Garg, S., Puthal, D., James, P., Zomaya, A. Y., Dustdar, S., & Ranjan, R. (2019). IoTSim-Edge: A simulation framework for modeling the behaviour of IoT and edge computing environments. Software: Practice and Experience.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chander, B., Pal, S., De, D., Buyya, R. (2022). Artificial Intelligence-based Internet of Things for Industry 5.0. In: Pal, S., De, D., Buyya, R. (eds) Artificial Intelligence-based Internet of Things Systems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-87059-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87059-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87058-4

  • Online ISBN: 978-3-030-87059-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics