Abstract
This paper deals with the mathematical presentation of some computational formulas for characterizing natural and artificial languages, as the Zipf–Mandelbrot scaling law; the Shannon–Weaver entropy; and the Rényi generalized fractal dimensions with applications to fractal, multifractal and correlation dimensions of time series of texts. Turing machine is related to formal language and recursion. By recursive process, fractal can be generated. It is shown that fractal can be generated by incursion, an inclusive or implicit recursion. The fundamental property of incursion deals with the definition of a path that means that the iterations are ordered, contrary to the recursion which deals with parallel iterations. The main property is that the incursive fractal is invertible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ausloos, M. (2008). Equilibrium and dynamic methods when comparing an English text and its Esperanto translation. Physica A: Statistical Mechanics and Its Applications, 387, 6411–6420.
Ausloos, M. (2010). Punctuation effects in English and Esperanto texts. Physica A: Statistical Mechanics and Its Applications, 389, 2835–2840.
Ausloos, M. (2012a). Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Physical Review, 86(3).
Ausloos, M. (2012b). Measuring complexity with multifractals in texts. Translation Effects. Chaos, Solitons & Fractals, 45, 1349–1357.
Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113–124.
Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167.
Dubois, D. M. (1973). Aspect mathématique de l’invariant en cybernétique. Cybernetica, 16(3), 161–176.
Dubois, D. M. (1975). Learning, adaptation and evolution of the environment ecosystem couple. Journal of Cybernetics, 5(2), 109–125.
Dubois, D. M. (1990). Le Labyrinthe de l’Intelligence: de l’Intelligence Naturelle à l’Intelligence Fractale. Paris: InterEditions.
Dubois, D. M. (1997). Generation of fractals from incursive automata, digital diffusion and wave equation systems, Invited paper. Biosystems, 43, 97–114.
Dubois, D. M. (1998). Hyperincursive methods for generating fractals in automata related to diffusion and wave equations. Invited paper. International Journal of General Systems, 27(1–3), 141–180.
Dubois, D. M., & Belly, M. (2000). Generating self-symmetrical fractals by hyperincursive automata and multiple reduction copy machine. International Journal of Computing Anticipatory Systems, 6, 95–115.
Dubois, D. M., & Resconi, G. (1992). HYPERINCURSIVITY: A new mathematical theory (p. 260). Liège: Presses Universitaires de Liège.
Grassberger, P., & Procaccia, I. (1983a). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.
Grassberger, P., & Procaccia, I. (1983b). Characterization of strange attractors. Physical Review Letters, 50, 346–349.
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve ? Science, 298, 1569–1579.
Kull, K. (1998). Organism as a self-reading text: Anticipation and semiosis. International Journal of Computing Anticipatory Systems, 1, 93–104.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.
La Salle, J., & Lefschetz, S. (1961). Stability by Lyapunov’s direct method with applications. New York/London: Academic.
Levary, D., Eckmann, J. P., Moses, E. & Tlusty, T. (2012). Loops and self-reference in the construction of dictionaries. Physical Review, X(2).
Lotka, A. (1956). Elements of mathematical biophysics. New York: Dover Publications Inc.
Lowenthal, F. (2010). Language and recursion. In D. M. Dubois (Ed.), Computing anticipatory systems, American Institute of Physics, AIP Conference Proceedings, 1303 (pp. 255–264).
Mandelbrot, B. (1954). Structure formelle des textes et communication. Word, 10(1).
Mandelbrot, B. (1966). Information theory and psycholinguistics: A theory of words frequencies. In P. Lazafeld & N. Henry (Eds.), Readings in mathematical social science. Cambridge, MA: MIT Press.
Mandelbrot, B. (1983). The fractal geometry of nature. New York: W.H. Freeman.
Morin, E. (1986). La Méthode 2. La connaissance de la connaissance/1. Paris: Le Seuil.
Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals: New frontiers of science. New York: Springer.
Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Systems Technical Journal, 30, 50–64.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: University of Illinois Press.
Sierpinski, W. (1915). Sur une courbe cantorienne dont tout point est un point de ramification. Comptes Rendus (Paris), 160, 302.
Sierpinski, W. (1916). Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. Comptes Rendus (Paris), 162, 632.
Steels, L. (2010). Adaptive language games with robots. In D. M. Dubois (Ed.), Computing anticipatory systems, American Institute of Physics, AIP Conference Proceedings, 1303 (pp. 3–14).
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.
Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem: A correction. Proceedings of the London Mathematical Society, 2(43), 544–546.
Volterra, V. (1931). Leçons sur la théorie mathématique de la lute pour la vie. Paris: Gauthier-Villars.
Wittgenstein, L. (1921). Tractatus Logico-Philosophicus (TLP). In C.K. Ogden, & P. Kegan (Eds). Originally published as “Logisch-Philosophische Abhandlung”, in Annalen der Naturphilosophische, XIV (3/4). London: Routledge
Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.
Zipf, G. K. (1935). The psycho-biology of language: An introduction to dynamic philology. Boston: Houghton Mifflin.
Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cambridge: Addison-Wesley.
Zipf, G. K. (1965). The psycho-biology of language, an introduction to dynamic philology. Cambridge, MA: MIT Press.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Dubois, D.M. (2014). Computational Language Related to Recursion, Incursion and Fractal. In: Lowenthal, F., Lefebvre, L. (eds) Language and Recursion. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9414-0_12
Download citation
DOI: https://doi.org/10.1007/978-1-4614-9414-0_12
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-9413-3
Online ISBN: 978-1-4614-9414-0
eBook Packages: Behavioral ScienceBehavioral Science and Psychology (R0)