[go: up one dir, main page]

Skip to main content

Computational Language Related to Recursion, Incursion and Fractal

  • Chapter
  • First Online:
Language and Recursion

Abstract

This paper deals with the mathematical presentation of some computational formulas for characterizing natural and artificial languages, as the Zipf–Mandelbrot scaling law; the Shannon–Weaver entropy; and the Rényi generalized fractal dimensions with applications to fractal, multifractal and correlation dimensions of time series of texts. Turing machine is related to formal language and recursion. By recursive process, fractal can be generated. It is shown that fractal can be generated by incursion, an inclusive or implicit recursion. The fundamental property of incursion deals with the definition of a path that means that the iterations are ordered, contrary to the recursion which deals with parallel iterations. The main property is that the incursive fractal is invertible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ausloos, M. (2008). Equilibrium and dynamic methods when comparing an English text and its Esperanto translation. Physica A: Statistical Mechanics and Its Applications, 387, 6411–6420.

    Article  Google Scholar 

  • Ausloos, M. (2010). Punctuation effects in English and Esperanto texts. Physica A: Statistical Mechanics and Its Applications, 389, 2835–2840.

    Article  Google Scholar 

  • Ausloos, M. (2012a). Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Physical Review, 86(3).

    Google Scholar 

  • Ausloos, M. (2012b). Measuring complexity with multifractals in texts. Translation Effects. Chaos, Solitons & Fractals, 45, 1349–1357.

    Article  Google Scholar 

  • Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113–124.

    Article  Google Scholar 

  • Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167.

    Article  Google Scholar 

  • Dubois, D. M. (1973). Aspect mathématique de l’invariant en cybernétique. Cybernetica, 16(3), 161–176.

    Google Scholar 

  • Dubois, D. M. (1975). Learning, adaptation and evolution of the environment ecosystem couple. Journal of Cybernetics, 5(2), 109–125.

    Article  Google Scholar 

  • Dubois, D. M. (1990). Le Labyrinthe de l’Intelligence: de l’Intelligence Naturelle à l’Intelligence Fractale. Paris: InterEditions.

    Google Scholar 

  • Dubois, D. M. (1997). Generation of fractals from incursive automata, digital diffusion and wave equation systems, Invited paper. Biosystems, 43, 97–114.

    Article  PubMed  Google Scholar 

  • Dubois, D. M. (1998). Hyperincursive methods for generating fractals in automata related to diffusion and wave equations. Invited paper. International Journal of General Systems, 27(1–3), 141–180.

    Article  Google Scholar 

  • Dubois, D. M., & Belly, M. (2000). Generating self-symmetrical fractals by hyperincursive automata and multiple reduction copy machine. International Journal of Computing Anticipatory Systems, 6, 95–115.

    Google Scholar 

  • Dubois, D. M., & Resconi, G. (1992). HYPERINCURSIVITY: A new mathematical theory (p. 260). Liège: Presses Universitaires de Liège.

    Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983a). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983b). Characterization of strange attractors. Physical Review Letters, 50, 346–349.

    Article  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve ? Science, 298, 1569–1579.

    Article  PubMed  Google Scholar 

  • Kull, K. (1998). Organism as a self-reading text: Anticipation and semiosis. International Journal of Computing Anticipatory Systems, 1, 93–104.

    Google Scholar 

  • Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.

    Article  Google Scholar 

  • La Salle, J., & Lefschetz, S. (1961). Stability by Lyapunov’s direct method with applications. New York/London: Academic.

    Google Scholar 

  • Levary, D., Eckmann, J. P., Moses, E. & Tlusty, T. (2012). Loops and self-reference in the construction of dictionaries. Physical Review, X(2).

    Google Scholar 

  • Lotka, A. (1956). Elements of mathematical biophysics. New York: Dover Publications Inc.

    Google Scholar 

  • Lowenthal, F. (2010). Language and recursion. In D. M. Dubois (Ed.), Computing anticipatory systems, American Institute of Physics, AIP Conference Proceedings, 1303 (pp. 255–264).

    Google Scholar 

  • Mandelbrot, B. (1954). Structure formelle des textes et communication. Word, 10(1).

    Google Scholar 

  • Mandelbrot, B. (1966). Information theory and psycholinguistics: A theory of words frequencies. In P. Lazafeld & N. Henry (Eds.), Readings in mathematical social science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mandelbrot, B. (1983). The fractal geometry of nature. New York: W.H. Freeman.

    Google Scholar 

  • Morin, E. (1986). La Méthode 2. La connaissance de la connaissance/1. Paris: Le Seuil.

    Google Scholar 

  • Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals: New frontiers of science. New York: Springer.

    Book  Google Scholar 

  • Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Systems Technical Journal, 30, 50–64.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: University of Illinois Press.

    Google Scholar 

  • Sierpinski, W. (1915). Sur une courbe cantorienne dont tout point est un point de ramification. Comptes Rendus (Paris), 160, 302.

    Google Scholar 

  • Sierpinski, W. (1916). Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. Comptes Rendus (Paris), 162, 632.

    Google Scholar 

  • Steels, L. (2010). Adaptive language games with robots. In D. M. Dubois (Ed.), Computing anticipatory systems, American Institute of Physics, AIP Conference Proceedings, 1303 (pp. 3–14).

    Google Scholar 

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.

    Google Scholar 

  • Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem: A correction. Proceedings of the London Mathematical Society, 2(43), 544–546.

    Google Scholar 

  • Volterra, V. (1931). Leçons sur la théorie mathématique de la lute pour la vie. Paris: Gauthier-Villars.

    Google Scholar 

  • Wittgenstein, L. (1921). Tractatus Logico-Philosophicus (TLP). In C.K. Ogden, & P. Kegan (Eds). Originally published as “Logisch-Philosophische Abhandlung”, in Annalen der Naturphilosophische, XIV (3/4). London: Routledge

    Google Scholar 

  • Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

    Google Scholar 

  • Zipf, G. K. (1935). The psycho-biology of language: An introduction to dynamic philology. Boston: Houghton Mifflin.

    Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cambridge: Addison-Wesley.

    Google Scholar 

  • Zipf, G. K. (1965). The psycho-biology of language, an introduction to dynamic philology. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubois, D.M. (2014). Computational Language Related to Recursion, Incursion and Fractal. In: Lowenthal, F., Lefebvre, L. (eds) Language and Recursion. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9414-0_12

Download citation

Publish with us

Policies and ethics