Abstract
The design of the logical layer of the Semantic Web, and subsequently of the mark-up language SWRL, has renewed the interest in hybrid knowledge representation and reasoning. In this paper we discuss principles of inductive reasoning for this layer. To this aim we provide a general framework for learning in \({\mathcal AL}\)-log, a hybrid language that integrates the description logic \({\mathcal ALC}\) and the function-free Horn clausal language Datalog, thus turning out to be a small yet sufficiently expressive subset of SWRL. In this framework inductive hypotheses are represented as constrained Datalog clauses, organized according to the \({\mathcal B}\)-subsumption relation, and evaluated against observations by applying coverage relations that depend on the representation chosen for the observations. The framework is valid whatever the scope of induction (description vs. prediction) is. Yet, for illustrative purposes, we concentrate on an instantiation of the framework which supports description.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)
Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling Up Inductive Logic Programming by Learning from Interpretations. Data Mining and Knowledge Discovery 3, 59–93 (1999)
Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)
Buntine, W.: Generalized subsumption and its application to induction and redundancy. Artificial Intelligence 36(2), 149–176 (1988)
Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)
De Raedt, L., Dehaspe, L.: Clausal Discovery. Machine Learning 26(2–3), 99–146 (1997)
Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)
Flach, P.: Conjectures: An Inquiry concerning the Logic of Induction. Phd thesis, Tilburg University (1995)
Flach, P., Lavrač, N.: Learning in Clausal Logic: A Perspective on Inductive Logic Programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 437–471. Springer, Heidelberg (2002)
Frisch, A.M.: The substitutional framework for sorted deduction: Fundamental results on hybrid reasoning. Artificial Intelligence 49, 161–198 (1991)
Frisch, A.M.: Sorted downward refinement: Building background knowledge into a refinement operator for inductive logic programming. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 104–115. Springer, Heidelberg (1999)
Frisch, A.M., Cohn, A.G.: Thoughts and afterthoughts on the 1988 workshop on principles of hybrid reasoning. AI Magazine 11(5), 84–87 (1991)
Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)
Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)
Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)
Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)
Lisi, F.A., Malerba, D.: Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 49–60. Springer, Heidelberg (2003)
Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)
Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Reiter, R.: Equality and domain closure in first order databases. Journal of ACM 27, 235–249 (1980)
Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics (2005) (to appear)
Rouveirol, C., Ventos, V.: Towards Learning in CARIN-\(\mathcal{ALN}\). In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg (2000)
Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)
Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lisi, F.A. (2005). Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in \({\mathcal AL}\)-Log. In: Fages, F., Soliman, S. (eds) Principles and Practice of Semantic Web Reasoning. PPSWR 2005. Lecture Notes in Computer Science, vol 3703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552222_12
Download citation
DOI: https://doi.org/10.1007/11552222_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28793-3
Online ISBN: 978-3-540-32028-9
eBook Packages: Computer ScienceComputer Science (R0)