[go: up one dir, main page]

Skip to main content

Th1/Th2 Balance of the Implantation Site in Humans

  • Chapter
Immunology of Pregnancy

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Successful embryo implantation requires the synchronization of embryo development and uterine preparation. The embryo must have developed to the blastocyst stage and the endometrium must be in a receptive phase. Wilcox et al1 have estimated that 65% of conceptions end in unrecognized losses. These failures can be divided into failure to implant (20%), initial apposition but no adhesion or invasion (28%), and failure to develop immediately after implantation (17%). After implantation, approximately 15% of human conceptions end in a clinically detected spontaneous abortion. Furthermore, approximately 31% of pregnancies are lost after detection using sensitive assays for the beta subunit of human chorion gonadotropin (β-hCG). Therefore, implantation failure and pregnancy loss are the most common complications of pregnancy. Understanding the molecular factors involved in each phase of implantation and early pregnancy is critical to understanding the mechanism controlling reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilcox AJ, Weinberg CR, O’Connor JF et al. Incidence of early loss of pregnancy. N Eng J Med 1988;319:189–194.

    Article  CAS  Google Scholar 

  2. Saito S. Cytokine cross-talk between mother and the embryo/placenta. J Reprod Immunol 2001;52:15–33.

    Article  PubMed  CAS  Google Scholar 

  3. Chegini N, Williams RS. Cytokines and growth factor networks in human endometrium from menstruation to embryo implantation. In: Hill JA et al. Cytokines in human reproduction. 1st edition New York: Wiley-Liss Inc 2000;93–132.

    Google Scholar 

  4. Takabatake K, Fujiwara H, Goto Y et al. Intravenous administration of splenocytes in early pregnancy changes the implantation window in mice. Hum Reprod 1997;12:583–585.

    Article  PubMed  CAS  Google Scholar 

  5. Takabatake K, Fujiwara H, Goto Y et al. Splenocytes in early pregnancy promote embryo implantation by regulating endometrial differentiation in mice. Hum Reprod 1997;12:2102–2107.

    Article  PubMed  CAS  Google Scholar 

  6. Stewart CL, Kaspar P, Brunet LJ et al. Blastocyst implantation depends on maternal expression of leukemia inhibitory factor. Nature 1992;359:76–79.

    Article  PubMed  CAS  Google Scholar 

  7. Fujita K, Nakayama T, Takabatake K et al. Administration of thymocytes derived from non-pregnant mice induces an endometrial receptive stage and leukemia inhibitory factor expression in the uterus. Hum Reprod 1998;13:2888–2894.

    PubMed  CAS  Google Scholar 

  8. Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic self-tolerance maintained by activated T cells expressing IL-12 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151–1164.

    PubMed  CAS  Google Scholar 

  9. Mosmann TR, Sad S. The expanding universe of T cell subsets-Th1, Th2 and more. Immunol Today 1996; 17:138–146.

    Article  PubMed  CAS  Google Scholar 

  10. Nagaeva O, Jonsson L, Micheva-Nilsson L. Dominant IL-10 and TGF mRNA expression in T cells of human early pregnancy decidua suggests immunoregulatory potential. Am J Reprod Immunol 2002;48:9–17.

    Article  PubMed  Google Scholar 

  11. Saito S. Cytokine network at the feto-maternal interface. J Reprod Immunol 2000;47:87–103.

    Article  PubMed  CAS  Google Scholar 

  12. Loza MJ, Perussia B. Final stepts of natural killer cell maturation: a model for typel — type 2 differentiation? Net Immunol 2001;2:917–924.

    Article  CAS  Google Scholar 

  13. Michimata T, Tsuda H, Sakai M et al. Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D2-mediated manner. Mol Hum Reprod 2002;8:181–187.

    Article  PubMed  CAS  Google Scholar 

  14. Michimata T, Sakai M, Miyazaki S et al. Decrease of T-helper 2 and T-cytotoxic 2 cells at implantation sites occurs in unexplained recurrent spontaneous abortion with normal chromosomal content. Hum Reprod 2003;18:1523–1528.

    Article  PubMed  CAS  Google Scholar 

  15. Mellor AL, Chandler P, Lee GK et al. Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J Reprod Immunol 2002;57:143–150.

    Article  PubMed  CAS  Google Scholar 

  16. Wegmann TG, Lin H, Guilbert L et al. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH 2 phenomenon? Immunol Today 1993;14:353–356.

    Article  PubMed  CAS  Google Scholar 

  17. Saito S, Tsukaguchi N, Hasegawa T et al. Distribution of Th1, Th2 and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol 1999;42:240–245.

    PubMed  CAS  Google Scholar 

  18. Saito S, Sakai M, Sasaki Y et al. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 1999;117:550–555.

    Article  PubMed  CAS  Google Scholar 

  19. Drake PM, Gunn MD, Charo IF et al. Human0placental0cytotrophoblasts0attract0monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1 alpha. J Exp Med 2001;193:1199–1212.

    Article  PubMed  CAS  Google Scholar 

  20. Hirai H, Tanaka K, Yoshie O et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001;193:255–261.

    Article  PubMed  CAS  Google Scholar 

  21. Tsuda H, Michimata T, Hayakawa S et al. A Th2 chemokine, TARC, produced by trophoblasts and endometrial gland cells, regulates the infiltration of CCR4+ T lymphocytes into human decidua at early pregnancy. Am J Repord Immunol 2002;48:1–8.

    Article  Google Scholar 

  22. Miyazaki S, Tsuda H, Sakai M et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leuk Biol 2003;74:514–522.

    Article  CAS  Google Scholar 

  23. Piccinni MP, Guidizi MG, Biagiotti R et al. Progesterone favors the development of human T helper cells producing Th-2 type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 1995;155:128–133.

    PubMed  CAS  Google Scholar 

  24. Hill JA, Polgar K, Anderson DJ. T-Helper 1 type immunity to trophoblast in women with recur rent spontaneous abortion. JAMA 1995;273:1933–1936.

    Article  PubMed  CAS  Google Scholar 

  25. Bates MD, Quenby S, Takakuwa K et al. Aberrant cytokine production by peripheral blood mono-nuclear cells in recurrent pregnancy loss? Hum Reprod 2002;17:2439–2444.

    Article  PubMed  CAS  Google Scholar 

  26. Zenclussen AC, Fest S, Busse P et al. Questioning the Th1/Th2 paradigm in reproduction: Peripheral levels of IL-12 are down-regulated in miscarriage patients. Am J Reprod Immunol 2002;48:245–251.

    Article  PubMed  Google Scholar 

  27. Shimada S, Iwabuchi K, Emi H et al. No difference in natural-killer-T cell population, but Th2/Tc2 predominance in peripheral blood of recurrent aborters. Am J Reprod Immunol 2003;50:334–339.

    Article  PubMed  Google Scholar 

  28. Piccinni MP, Beloni L, Livi C et al. Defective production of both leukemia inhibitory factor and type 2 T helper cytokines by decidual T cells in unexplained recurrent abortions. Nature Med 1998;4:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  29. Michimata T, Ogasawara MS, Tsuda H et al. Distributions of endometrial NK cells, B cells, T cells, and Th2/Tc2 cells fail to predict pregnancy outcome following recurrent abortion. Am J Reprod Immunol 2002;47:196–202.

    Article  PubMed  Google Scholar 

  30. Sasaki Y, Sakai M, Miyazaki S et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004;10:347–353.

    Article  PubMed  CAS  Google Scholar 

  31. Heikkinen J. Mottonen M, Alanen A et al. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004;136:373–378.

    Article  PubMed  CAS  Google Scholar 

  32. Somerset DA, Zheng Y, Kilby MD et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+CD4+ regulatory T-cell subset. Immunology 2004;112:38–43.

    Article  PubMed  CAS  Google Scholar 

  33. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 2004;5:266–271.

    Article  PubMed  CAS  Google Scholar 

  34. Zenclussen AC, Gerlof K, Zenclussen ML et al. Abnormal T cell reactivity against paternal antigens in spontaneous abortion: Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells prevents fetal rejection in a murine abortion model. Am J Pathol 2005;166(3):811–22

    PubMed  Google Scholar 

  35. Hunt JS, Roly KF. Implantation factors. Clin Obsm Gynecol 1994;37:635–645.

    Article  CAS  Google Scholar 

  36. Croy BA, Esadeg S, Chantakru S et al. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 2003;59:175–191.

    Article  PubMed  Google Scholar 

  37. Chaouat G, Ledee-Bataille N, Zourbas S et al. Implantation: Can immunological parameters of implantation failure be of interest for preeclampsia? J Reprod Immunol 2003;59:205–217.

    Article  PubMed  CAS  Google Scholar 

  38. Robertson SA, Bromfield JJ, Tremellan KP. Seminal ‘priming’ for protection from pre-eclampsia—a unifying hypothesis. J Reprod Immunol 2003;59:253–265.

    Article  PubMed  Google Scholar 

  39. Tremellen KP, Valbuena D, Landeras J et al. The effect of intercourse on pregnancy rates during assisted human reproduction. Hum Reprod 2000;15:2653–2658.

    Article  PubMed  CAS  Google Scholar 

  40. Dealtry GB, O’Farrell MK, Fernandez N. The Th2 cytokine environment of the placenta. Int Arch Allergy Immunol 2000;123:107–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Saito, S., Miyazaki, S., Sasaki, Y. (2006). Th1/Th2 Balance of the Implantation Site in Humans. In: Mor, G. (eds) Immunology of Pregnancy. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-34944-8_4

Download citation

Publish with us

Policies and ethics