[go: up one dir, main page]

Skip to main content

Complex Networks: Basic Concepts, Construction, and Learning Methods

  • Chapter
  • First Online:
Association Analysis Techniques and Applications in Bioinformatics
  • 151 Accesses

Abstract

This chapter introduces an approach to modeling called complex networks. Complex networks are an abstract model for understanding real-world complex systems. It abstracts entities in a complex system into nodes and abstracts the relationship between entities into connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan, 1976.

    Google Scholar 

  2. FELLMANN E.A. Leonhard Euler[M]. Springer Science & Business Media, 2007.

    Google Scholar 

  3. BIGGS N, LLOYD E K, WILSON R J. Graph Theory[M]. Oxford University Press, 1986.

    Google Scholar 

  4. JACQUELINE HECHT.Un exemple de multidisciplinarité: Alexandre Vandermonde (1735–1796)[J]. 1971, Population, 4(26): 641–676.

    Google Scholar 

  5. CAUCHY A L. Research on polyhedra [J]. 1813, Polytechnic School, 9(16): 68–86.

    Google Scholar 

  6. L’HUILLIER M C. The empire of words: speakers Gauls and emperors Romans [J]. Persée-Portal of scientific journals in SHS, 1992, 3rd and 4th centuries (no. 1).

    Google Scholar 

  7. CAYLEY A. On the theory of the analytical forms called trees[J]. Mathematical papers, 1890, 3: 242–246.

    Google Scholar 

  8. CAYLEY E. About the analytical Figures, which in mathematics trees called will and their application to the theory chemical Compounds [J]. Reports of the German Chemical Society, 1875, 8(2): 1056–1059.

    Google Scholar 

  9. NEW YEARS J J. Chemistry and algebra[J]. Nature, 1878, 1 7(432): 2 84.

    Google Scholar 

  10. TUTTE W T. Graph theory[M]. Cambridge university press, 2001.

    Google Scholar 

  11. ORE O. The four-color problem[M]. Academic Press, 2011.

    Google Scholar 

  12. BOLLOBÁS B. Extremal graph theory [M]. Courier Corporation, 2004.

    Google Scholar 

  13. HEESCH H. Investigations for the Four color problem [M]. Bibliographic Institute, 1969.

    Google Scholar 

  14. APPEL K, HAKEN W, KOCH J. Every planar map is four colorable. Part II: Reducibility[J]. Illinois journal of mathematics, 1977, 21(3): 491–567.

    MathSciNet  Google Scholar 

  15. APPEL K I, HAKEN W. Every planar map is four colorable[M]. American Mathematical Soc, 1989.

    Google Scholar 

  16. ROBERTSON N, SANDERS D, SEYMOUR P, et al. The four-colour theorem[J]. Series B, 1997, 70(1): 2–44.

    MathSciNet  Google Scholar 

  17. HARARY F, PALMER E M. Graphical enumeration[M]. Elsevier, 2014.

    Google Scholar 

  18. GALLIER J H. Logic for computer science: foundations of automatic theorem proving[M]. Courier Dover Publications, 2015.

    Google Scholar 

  19. HOPPER P J, BYBEE J L. Frequency and the emergence of linguistic structure[J]. Frequency and the Emergence of Linguistic Structure, 2001: 1–502.

    Google Scholar 

  20. Adali T, Ortega A. Applications of graph theory[J]. Proceedings of the IEEE, 2018, 106(5): 784–786.

    Article  Google Scholar 

  21. Mashaghi A R, Ramezanpour A, Karimipour V. Investigation of a protein complex network[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41: 113–121.

    Article  Google Scholar 

  22. Shah P, Ashourvan A, Mikhail F, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7), 1955–1972.

    Google Scholar 

  23. BJORKEN J D, DRELL S D. Relativistic quantum fields[M]. McGraw-Hill, 1965.

    Google Scholar 

  24. KUMAR A, KULKARNI G. Evaluating conducting network based transparent electrodes from geometrical considerations[J]. Journal of Applied Physics, 2016, 119(1): 015102.

    Article  Google Scholar 

  25. ADALI T, ORTEGA A. Applications of graph theory [Scanning the Issue][J]. Proceedings of the IEEE, 2018, 106(5): 784–786.

    Article  Google Scholar 

  26. LEWIS T G. Network science: Theory and applications[M]. John Wiley & Sons, 2011.

    Google Scholar 

  27. GRANDJEAN M. Social network analysis and visualization: Moreno’s Sociograms revisited[M]. 2015.

    Google Scholar 

  28. Kelly S T, Black M A. graphism: An R package for simulating gene expression data from graph structures of biological pathways[J]. bioRxiv, 2020(03).

    Google Scholar 

  29. SHAH P, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7): 1955–1972.

    Article  Google Scholar 

  30. FONSECA G, FONSECA I, GANGBO W. Degree theory in analysis and applications[M]. Oxford University Press, 1995.

    Book  Google Scholar 

  31. WASSERMAN, STANLEY, FAUST, et al. Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences)[M]. Cambridge University Press, 1994.

    Google Scholar 

  32. LAWLER G F, LIMIC V. Random walk: a modern introduction[M]. Cambridge University Press, 2010.

    Google Scholar 

  33. TUTTE W T. Connectivity in graphs[M]. Connectivity in Graphs. University of Toronto Press, 2019.

    Google Scholar 

  34. PERFECT H. Applications of Menger’s graph theorem[J]. Journal of Mathematical Analysis and Applications, 1968, 22(1): 96–111.

    Article  MathSciNet  Google Scholar 

  35. MOHAR B. Some applications of Laplace eigenvalues of graphs[M]. Graph symmetry. Springer, Dordrecht, 1997: 225–275.

    Google Scholar 

  36. HORVATH S. Weighted network analysis: applications in genomics and systems biology[M]. Springer Science & Business Media, 2011.

    Google Scholar 

  37. PALLA G, FARKAS I J, POLLNER P, et al. Directed network modules[J]. New journal of physics, 2007, 9(6): 186.

    Article  Google Scholar 

  38. BRETTO A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.

    Book  Google Scholar 

  39. PEI S, MAKSE H A. Spreading dynamics in complex networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(12): P12002.

    Article  Google Scholar 

  40. TAO Z, ZHONGQIAN F, BINGHONG W. Epidemic dynamics on complex networks[J]. Progress in Natural Science, 2006, 16(5): 452–457.

    Article  MathSciNet  Google Scholar 

  41. DOERR B, FOUZ M, FRIEDRICH T. Why rumors spread so quickly in social networks[J]. Communications of the ACM, 2012, 55(6): 70–75.

    Article  Google Scholar 

  42. WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. nature, 1998, 393(6684): 440–442.

    Google Scholar 

  43. NEWMAN M E J. Models of the small world[J]. Journal of Statistical Physics, 2000, 101(3): 819–841.

    Article  Google Scholar 

  44. BRITTON T, DEIJFEN M, MARTIN-LÖF A. Generating simple random graphs with prescribed degree distribution[J]. Journal of statistical physics, 2006, 124(6): 1377–1397.

    Article  MathSciNet  Google Scholar 

  45. KLEIN D J. Centrality measure in graphs[J]. Journal of mathematical chemistry, 2010, 47(4): 1209–1223.

    Article  MathSciNet  Google Scholar 

  46. GUIMERA R, AMARAL L. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 895–900.

    Article  Google Scholar 

  47. ALHINDI T, ZHANG Z, RUELENS P, et al. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network[J]. Scientific reports, 2017, 7(1): 1–15.

    Article  Google Scholar 

  48. MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824–827.

    Article  Google Scholar 

  49. KIM J, BATES D G, POSTLETHWAITE I, et al. Robustness analysis of biochemical network models[J]. IEE Proceedings-Systems Biology, 2006, 153(3): 96–104.

    Article  Google Scholar 

  50. SPORNS O. The human connectome: a complex network[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 109–125.

    Article  Google Scholar 

  51. Courtesy of the Cajal Institute and the Spanish National Research Council.

    Google Scholar 

  52. POWER J D, COHEN A L, NELSON S M, et al. Functional network organization of the human brain[J]. Neuron, 2011, 72(4): 665–678.

    Article  Google Scholar 

  53. POLIS G A, STRONG D R. Food web complexity and community dynamics[J]. The American Naturalist, 1996, 147(5): 813–846.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Guangxi Education Publishing House

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q. (2024). Complex Networks: Basic Concepts, Construction, and Learning Methods. In: Association Analysis Techniques and Applications in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8251-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8251-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8250-9

  • Online ISBN: 978-981-99-8251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics