[go: up one dir, main page]

Skip to main content

Introduction to Nanofabrication for Theranostics Application

  • Chapter
  • First Online:
Nanotheranostics for Diagnosis and Therapy

Abstract

Nanotheranostics is a treatment approach that integrates therapeutics and diagnostics using a single nanocarrier system. Its purpose is to monitor drug delivery, assess therapy response, and improve the drug efficacy and its safety. This novel fabrication in one system has garnered significant attention and has been acknowledged as a possible paradigm shift in addressing the limitations of traditional chemotherapy due to its ability to accomplish precise illness detection and treatment. Nanoparticulate systems are highly suitable for carrying theranostic agents due to their exceptional physicochemical properties. These properties include their nanoscale sizes, functional properties, extended blood circulation, ability to actively or passively target tumors, specific cellular uptake, and in certain cases, excellent optical properties that are ideal for simultaneous phototherapy and imaging. In general, the advancement of nanotechnology has made theranostics a tangible possibility, now undergoing the process of transitioning from laboratory research to practical use in medical settings. This chapter provides a concise overview of nanotheranostics, which is being explored as a promising technique for the treatment and diagnosis of several diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accomasso L, Cristallini C, Giachino C (2018) Risk assessment and risk minimization in nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol 9:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17:928–934

    Article  CAS  PubMed  Google Scholar 

  • Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V (2023) Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer’s disease. Nanomedicine (Lond) 18(2):145–168. https://doi.org/10.2217/nnm-2022-0108

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C et al (2015) Toward understanding and exploiting tumor heterogeneity. Nat Med 21:846–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreou C, Pal S, Rotter L, Yang J, Kircher MF (2017) Molecular imaging in nanotechnology and theranostics. Mol Imaging Biol 19:363–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardhan R, Lal S, Joshi A et al (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA (2020) Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncol 16(35):2959–2980. https://doi.org/10.2217/fon-2020-0198

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan P, Maity D, Yong CX et al (2011) Vitamin E (d-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32(24):5663–5672

    Article  CAS  PubMed  Google Scholar 

  • Chavda VP, Khadela A, Shah Y, Postwala H, Balar P, Vora L (2023) Current status of cancer nanotheranostics: emerging strategies for cancer management. Nanotheranostics 7(4):368–379. https://doi.org/10.7150/ntno.82263

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Xu XD, Jia HZ et al (2013) Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 34(34):8798–8807

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang W, Zhu G, Xie J, Chen X (2017a) Rethinking cancer nanotheranostics. Nat Rev Mater 2:17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wu Y, Sun B, Liu S, Liu H (2017b) Two-dimensional nanomaterials for cancer nanotheranostics. Small 13:1603446

    Article  Google Scholar 

  • Dai H, Wang X, Shao J, Wang W, Mou X, Dong XJS (2021) NIR-II organic nanotheranostics for precision oncotherapy. Small 17:e2102646

    Article  PubMed  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  • Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, Becker M, Marquez C, Knox S (1996) Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res 2:1289–1297

    CAS  PubMed  Google Scholar 

  • Deveza L, Choi J, Yang F (2012) Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2(8):801–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding H, Wu F (2012) Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2(11):1040–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreifuss T, Betzer O, Shilo M, Popovtzer A, Motiei M, Popovtzer R (2015) A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics? Nanoscale 7:15175–15184

    Article  CAS  PubMed  Google Scholar 

  • Feng SS (2006) New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine (Lond) 1(3):297–309

    Article  CAS  PubMed  Google Scholar 

  • Funkhouser J (2002) Reinventing pharma: the theranostic revolution. Curr Drug Discov 08:17–19

    Google Scholar 

  • Gaspar R (2007) Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine 2:143–147

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Meng L, Xu L et al (2012) Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology 6(5):526–542

    Article  CAS  PubMed  Google Scholar 

  • Goyal AK, Ramchandani M, Basak T (2023) Recent advancements, challenges, and future prospects in usage of nanoformulation as theranostics in inflammatory diseases. J Nanotheranostics 4(1):106–126. https://doi.org/10.3390/jnt4010006

    Article  Google Scholar 

  • Guo X, Wei X, Chen Z, Zhang XB, Yang G, Zhou SB (2020) Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci 107:24

    Article  Google Scholar 

  • Hillier S, Merkin R, Maresca K, Zimmerman C, Barrett J, Tesson M, Eckelman W, Mairs R, Joyal J, Babich J et al (2011) [131I]MIP-1375, a small molecule prostate-specific membrane antigen (PSMA) inhibitor for targeted therapy of prostate cancer (PCa). J Nucl Med 52:361

    Google Scholar 

  • Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44(10):875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, Barkat MA (2019) Quantum dots: next generation of smart nano-systems. Pharm Nanotechnol 7(3):234–245. https://doi.org/10.2174/2211738507666190429113906

    Article  CAS  PubMed  Google Scholar 

  • Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26:1042–1049

    Article  PubMed  Google Scholar 

  • Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC (2016) Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  CAS  PubMed  Google Scholar 

  • Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl 98:1252–1276

    Article  CAS  PubMed  Google Scholar 

  • Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK (2023) Smart nanomaterials in cancer theranostics: challenges and opportunities. ACS Omega 8(16):14290–14320. https://doi.org/10.1021/acsomega.2c07840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Xu H, Zhuang W, Wang Y, Li G, Wang Y (2020) Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation. ACS Nano 14:5862–5873

    Article  CAS  PubMed  Google Scholar 

  • Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, Zimmerman CN, Kozikowski AP, Barrett JA, Eckelman WC et al (2009) A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 52:347–357

    Article  CAS  PubMed  Google Scholar 

  • Mateo D, Morales P, Avalos A et al (2014) Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol Mech Methods 24(3):161–172

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JR, Jaffer FA, Weissleder R (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2(8–9):983–987

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JR, Korngold E, Weissleder R, Jaffer FA (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6:2041–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei L, Zhang Z, Zhao L et al (2013) Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65(6):880–890

    Article  CAS  PubMed  Google Scholar 

  • Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Paul M, Mukherjee S (2019) Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 11:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthu MS, Feng SS (2013) Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 10(2):151–155

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond) 4(1):105–118

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Wilson B (2010) Multifunctional radionanomedicine: a novel nanoplatform for cancer imaging and therapy. Nanomedicine (Lond) 5(2):169–171

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Kulkarni SA, Raju A et al (2012) Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33(12):3494–3501

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. https://doi.org/10.7150/thno.8698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng KW, Khoo PKS, Heng BC et al (2011) Cellular DNA damage response to zinc oxide nanoparticles hinges on the tumor suppressor p53 pathway. Biomaterials 32(32):8218–8225

    Article  CAS  PubMed  Google Scholar 

  • Nirmala MJ, Kizhuveetil U, Johnson A, Balaji G, Nagarajan R, Muthuvijayan V (2023) Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 13(13):8606–8629. https://doi.org/10.1039/d2ra07863e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK et al (2022) Nanotheranostics: nanoparticles applications, perspectives, and challenges. In: BioSensing, theranostics, and medical devices. Springer, pp 345–376

    Chapter  Google Scholar 

  • Pan J, Liu Y, Feng SS (2010) Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine (Lond) 5(3):347–360

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Cui J, Zhang Y, Wang Y, Zhang X, Zheng H, Shu X, Fu B, Wu Y (2016) Integration of microfluidic injection analysis with carbon nanomaterials/gold nanowire arrays-based biosensors for glucose detection. Sci Bull 61:473–480

    Article  CAS  Google Scholar 

  • Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV (2019) Nanotheranostics targeting the tumor microenvironment. Front Bioeng Biotechnol 7:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Santra S (2012) The potential clinical impact of quantum dots. Nanomedicine (Lond) 7(5):623–626

    Article  CAS  PubMed  Google Scholar 

  • Seidlin SM, Marinelli LD, Oshry E (1946) Radioactive iodine therapy. J Am Med Assoc 132:838–847

    Article  CAS  PubMed  Google Scholar 

  • Setyawati MI, Tay CY, Leong DT (2013) Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 34(38):10133–10142

    Article  CAS  PubMed  Google Scholar 

  • Shuhendler AJ, Prasad P, Leung M et al (2012) A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater 1(5):600–608

    Article  CAS  PubMed  Google Scholar 

  • Smith BA, Smith BD (2012) Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 23(10):1989–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneider A, VanDyke D, Paliwal S, Rai P (2017) Remotely triggered nano-theranostics for cancer applications. Nanotheranostics 1:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumer B, Gao J (2008) Theranostic nanomedicine for cancer. Nanomedicine (Lond) 3(2):137–140

    Article  PubMed  Google Scholar 

  • Tan YF, Chandrasekharan P, Maity D et al (2011) Multimodal tumor imaging by iron oxides and quantum dots formulated in poly(lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials 32(11):2969–2978

    Article  CAS  PubMed  Google Scholar 

  • Taratula O, Schumann C, Naleway MA et al (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image guided drug delivery and photodynamic therapy. Mol Pharm 10(10):3946–3958

    Article  CAS  PubMed  Google Scholar 

  • Tay CY, Cai PQ, Setyawati MI et al (2014) Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett 14(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Tinkle S, Mcneil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313:35–56

    Article  CAS  PubMed  Google Scholar 

  • Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S (2016) Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res 107:57–65

    Article  CAS  PubMed  Google Scholar 

  • Valent P, Groner B, Schumacher U, Superti-Furga G, Busslinger M, Kralovics R et al (2016) Paul Ehrlich (1854–1915) and His Contributions to the Foundation Birth of Translational Medicine. J Innate Immun 8(2):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikyan I (2012) Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics 2(5):424–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner S (2004) Diagnostics + therapy = theranostics. Scientist 18:38–39

    Google Scholar 

  • Win KY, Feng SS (2006) In vitro and in vivo studies on vitamin E TPGS-emulsified poly(d, l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials 27(10):2285–2291

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Tian F, Zhao JX et al (2013) Evaluating pharmacokinetics and toxicity of luminescent quantum dots. Expert Opin Drug Metab Toxicol 9(10):1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ST, Luo J, Zhou Q et al (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2(3):271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Chen X (2011) Integrin targeting for tumor optical imaging. Theranostics 1:102–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong KT, Wang Y, Roy I et al (2012) Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2(7):681–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhang H, Kaur H et al (2013) Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography. Mol Imaging 12(3):1–10

    Article  Google Scholar 

  • Yukawa H, Sato K, Baba Y (2023) Theranostics applications of quantum dots in regenerative medicine, cancer medicine, and infectious diseases. Adv Drug Deliv Rev 200:114863. https://doi.org/10.1016/j.addr.2023.114863

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Feng SS (2010) Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci 99(8):3552–3560

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Mi Y, Feng SS (2013) siRNA based nanomedicine. Nanomedicine (Lond) 8(6):859–862

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Hong H, Xu ZP et al (2013) Quantum dot-based nanoprobes for in vivo targeted imaging. Curr Mol Med 13(10):1549–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barkat, M.A., Rahman, M.A., Ansari, M.A., Ahmad, F.J. (2024). Introduction to Nanofabrication for Theranostics Application. In: Barkat, M.A., Ahmad, F.J., Rahman, M.A., Ansari, M.A. (eds) Nanotheranostics for Diagnosis and Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-97-3115-2_1

Download citation

Publish with us

Policies and ethics