Abstract
We propose a probabilistic segmentation scheme, which is widely applicable to some extend. Besides the segmentation itself our model incorporates object specific shading. Dependent upon application, the latter is interpreted either as a perturbation or as meaningful object characteristic. We discuss the recognition task for segmentation, learning tasks for parameter estimation as well as different formulations of shading estimation tasks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: Proc. of the 7. Intl. Conf. on Computer Vision, vol. 1, pp. 377–384 (1999)
Cremers, D.: A multiphase level set framework for variational motion segmentation. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space Methods in Computer Vision (Isle of Skye), vol. 2695, pp. 599–614. Springer, Heidelberg (2003)
Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision 72(2), 195–215 (2007)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28(10), 1568–1583 (2006)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 65–81. Springer, Heidelberg (2002)
Micusik, B., Pajdla, T.: Multi-label image segmentation via max-sum solver. In: Proc. of Computer Vision and Pattern Recognition (2007)
Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one, Tech. report, Dresden University of Technology, TUD-FI06-01 (April 2005), http://www.bv.inf.tu-dresden.de/~ds24/tr_kto2.pdf
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudo-moment matching. In: Workshop on Artificial Intelligence and Statistics (January 2003)
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: A new class of upper bounds on the log partition function. IEEE Transactions on Information Theory 51(7), 2313–2335 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schlesinger, D., Flach, B. (2008). A Probabilistic Segmentation Scheme. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-69321-5_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69320-8
Online ISBN: 978-3-540-69321-5
eBook Packages: Computer ScienceComputer Science (R0)