[go: up one dir, main page]

Skip to main content

Neural Architecture Performance Prediction Using Graph Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Abstract

In computer vision research, the process of automating architecture engineering, Neural Architecture Search (NAS), has gained substantial interest. Due to the high computational costs, most recent approaches to NAS as well as the few available benchmarks only provide limited search spaces. In this paper we propose a surrogate model for neural architecture performance prediction built upon Graph Neural Networks (GNN). We demonstrate the effectiveness of this surrogate model on neural architecture performance prediction for structurally unknown architectures (i.e. zero shot prediction) by evaluating the GNN on several experiments on the NAS-Bench-101 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search using performance prediction. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 – May 3, 2018, Workshop Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=HJqk3N1vG

  2. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for syntax-aware neural machine translation. arXiv preprint arXiv:1704.04675 (2017)

  3. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  6. Dong, X., Yang, Y.: NAS-Bench-102: extending the scope of reproducible neural architecture search. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=HJxyZkBKDr

  7. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint arXiv:1808.05377 (2018)

  8. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1437–1446. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018. http://proceedings.mlr.press/v80/falkner18a.html

  9. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272. JMLR.org (2017)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  16. Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, pp. 2020–2029 (2018)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, May 2012

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

    Google Scholar 

  21. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.05493

  22. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs (2018)

    Google Scholar 

  23. Liu, C., et al.: Progressive neural architecture search. CoRR abs/1712.00559 (2017), http://arxiv.org/abs/1712.00559

  24. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. CoRR abs/1711.00436 (2017). http://arxiv.org/abs/1711.00436

  25. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. CoRR abs/1806.09055 (2018). http://arxiv.org/abs/1806.09055

  26. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization. In: Advances in Neural Information Processing Systems, pp. 7816–7827 (2018)

    Google Scholar 

  27. Monti, F., Bronstein, M., Bresson, X.: Geometric matrix completion with recurrent multi-graph neural networks. In: Advances in Neural Information Processing Systems, pp. 3697–3707 (2017)

    Google Scholar 

  28. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

    Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  30. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: Proceedings of the 35th International Conference on Machine Learning, pp. 4092–4101 (2018)

    Google Scholar 

  31. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, pp. 2902–2911 (2017)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  33. Tang, Y., et al.: A semi-supervised assessor of neural architectures (2020)

    Google Scholar 

  34. White, C., Neiswanger, W., Savani, Y.: BANANAS: Bayesian optimization with neural architectures for neural architecture search. arXiv preprint arXiv:1910.11858 (2019)

  35. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596 (2019)

  36. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  37. Yi, L., Su, H., Guo, X., Guibas, L.J.: SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2282–2290 (2017)

    Google Scholar 

  38. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: NAS-bench-101: Towards reproducible neural architecture search. arXiv preprint arXiv:1902.09635 (2019)

  39. Zela, A., Siems, J., Hutter, F.: NAS-Bench-1Shot1: benchmarking and dissecting one-shot neural architecture search. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=SJx9ngStPH

  40. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  41. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgement

We thank Alexander Diete for helpful discussions and comments. This project is supported by the German Federal Ministry of Education and Research Foundation via the project DeToL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovita Lukasik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukasik, J., Friede, D., Stuckenschmidt, H., Keuper, M. (2021). Neural Architecture Performance Prediction Using Graph Neural Networks. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics