[go: up one dir, main page]

Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1278))

Abstract

The development of industry 4.0 (I4.0) systems is increasingly conceptualised as a configuration process during which components are selected and associated to compose a desired system. This paper presents an approach to configuring I4.0 systems in a distributed way involving the various stakeholders. It is termed Tindustry, as it is inspired by concepts from online dating using the app Tinder. In the approach, I4.0 components are “matched” by reciprocal agreement of the respective component owners. The matching of components is embedded in a metaphorical dating process that is aligned with the fundamental activities of configuration design. The Tindustry approach is illustrated using an I4.0 configuration example, demonstrating some of the benefits in a concrete scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Dating#Different_meanings_of_the_term.

  2. 2.

    https://tinder.com/.

  3. 3.

    https://www.statista.com/statistics/826778/most-popular-dating-apps-by-audience-size-usa/.

  4. 4.

    https://www.theverge.com/2019/3/15/18267772/tinder-elo-score-desirability-algorithm-how-works.

References

  1. Heidel, R., Hoffmeister, M., Hankel, M., Döbrich, U.: Industrie 4.0 - Basiswissen RAMI 4.0 : Referenzarchitekturmodell mit Industrie 4.0-Komponente. DIN Deutsches Institut für Normung e.V., Berlin, Germany (2017)

    Google Scholar 

  2. IEC: IEC PAS 63088:2017 Smart manufacturing - Reference architecture model industry 4.0 (RAMI4.0). International Electrotechnical Commission, Geneva, Switzerland (2017)

    Google Scholar 

  3. Moser, C., Kannengiesser, U.: Incremental implementation of automated guided vehicle-based logistics using S-BPM: experience report of a digitalization project at ENGEL Austria. In: S-BPM ONE 2019: Proceedings of the 11th International Conference on Subject-Oriented Business Process Management, Seville, Spain. Association for Computing Machinery (2019). https://doi.org/10.1145/3329007.3329015

  4. VDMA: Guideline Industrie 4.0: Guiding principles for the implementation of Industrie 4.0 in small and medium sized businesses. Verband Deutscher Maschinen- und Anlagenbau (VDMA), Frankfurt, Germany (2016)

    Google Scholar 

  5. PwC: Global Digital Operations Study 2018. https://www.pwc.com/gx/en/industries/industry-4-0.html. Accessed 11 Feb 2020

  6. Kannengiesser, U., Neubauer, M., Heininger, R.: Subject-oriented BPM as the glue for integrating enterprise processes in smart factories. In: Ciuciu, I., et al. (eds.) OTM 2015. LNCS, vol. 9416, pp. 77–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26138-6_11

    Chapter  Google Scholar 

  7. VDI: VDI 2206 - Design Methodology for Mechatronic Systems. Verein Deutscher Ingenieure, Düsseldorf, Germany (2004). https://doi.org/10.1002/mawe.19740050417

  8. VDI: Testing of Networked Systems for Industrie 4.0. Verein Deutscher Ingenieure, Düsseldorf, Germany (2018)

    Google Scholar 

  9. Harrison, R., Vera, D., Ahmad, B.: Engineering methods and tools for cyber-physical automation systems. Proc. IEEE 104, 973–985 (2016). https://doi.org/10.1109/JPROC.2015.2510665

    Article  Google Scholar 

  10. Aicher, T., Schutz, D., Vogel-Heuser, B.: Consistent engineering information model for mechatronic components in production automation engineering. In: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 2532–2537. IEEE (2014). https://doi.org/10.1109/IECON.2014.7048862

  11. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-Oriented Business Process Management, 1st edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32392-8

  12. Paetzold, K.: Product and systems engineering/CA* tool chains. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 27–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_2

    Chapter  Google Scholar 

  13. Biffl, S., Gerhard, D., Lüder, A.: Introduction to the multi-disciplinary engineering for cyber-physical production systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems. LNCS, pp. 1–24. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_1

    Chapter  Google Scholar 

  14. Kannengiesser, U., Müller, H.: Multi-level, viewpoint-oriented engineering of cyber-physical production systems: an approach based on industry 4.0, system architecture and semantic web standards. In: Proceedings - 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018, Prague, Czech Republic, pp. 331–334. IEEE (2018). https://doi.org/10.1109/SEAA.2018.00061

  15. Vogel-Heuser, B., Hess, D.: Guest editorial industry 4.0–prerequisites and visions. IEEE Trans. Autom. Sci. Eng. 13, 411–413 (2016)

    Google Scholar 

  16. Sharpe, R., van Lopik, K., Neal, A., Goodall, P., Conway, P.P., West, A.A.: An industrial evaluation of an Industry 4.0 reference architecture demonstrating the need for the inclusion of security and human components. Comput. Ind. 108, 37–44 (2019)

    Google Scholar 

  17. Kenett, R.S., Swarz, R.S., Zonnenshain, A. (eds.): Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering. Wiley, Hoboken (2020)

    Google Scholar 

  18. Porrmann, T., Essmann, R., Colombo, A.W.: Development of an event-oriented, cloud-based SCADA system using a microservice architecture under the RAMI4.0 specification: lessons learned. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 3441–3448 (2017). https://doi.org/10.1109/IECON.2017.8216583

  19. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9, 350–365 (2014)

    Article  Google Scholar 

  20. Thramboulidis, K., Bochalis, P., Bouloumpasis, J.: A framework for MDE of IoT-based manufacturing cyber-physical systems. In: Proceedings of the Seventh International Conference on the Internet of Things - IoT 2017, pp. 1–8. ACM Press, New York (2017). https://doi.org/10.1145/3131542.3131554

  21. Sabin, D., Weigel, R.: Product configuration frameworks - a survey. IEEE Intell. Syst. Appl. 13, 42–49 (1998)

    Article  Google Scholar 

  22. Brown, D.C.: Defining configuring. Artif. Intell. Eng. Des. Anal. Manuf. 12, 301–305 (1998). https://doi.org/10.1017/s0890060498124034

    Article  Google Scholar 

  23. Fuchs, J., Schmidt, J., Franke, J., Rehman, K., Sauer, M., Karnouskos, S.: I4.0-compliant integration of assets utilizing the Asset Administration Shell. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1243–1247 (2019). https://doi.org/10.1109/ETFA.2019.8869255

  24. Bauer, D.A., Mäkiö, J.: Hybrid cloud – architecture for administration shells with RAMI4.0 using Actor4j. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), pp. 79–86 (2019). https://doi.org/10.1109/INDIN41052.2019.8972075

  25. Finkel, E.J., Eastwick, P.W., Karney, B.R., Reis, H.T., Sprecher, S.: Online dating: a critical analysis from the perspective of psychological science. Psychol. Sci. Public Interest 13, 3–66 (2012). https://doi.org/10.1177/1529100612436522

    Article  Google Scholar 

  26. Orosz, G., Tóth-Király, I., Bothe, B., Melher, D.: Too many swipes for today: the development of the problematic tinder use scale (PTUS). J. Behav. Addict. 5, 518–523 (2016). https://doi.org/10.1556/2006.5.2016.016

    Article  Google Scholar 

  27. Kahneman, D.: Thinking, Fast and Slow. Penguin Books, London (2011)

    Google Scholar 

  28. Gero, J.S., Kannengiesser, U.: An ontology of situated design teams. Artif. Intell. Eng. Des. Anal. Manuf. 21, 295–308 (2007). https://doi.org/10.1017/S0890060407000297

    Article  Google Scholar 

  29. Förster, R., Förster, A.: Einteilung der Fertigungsverfahren nach DIN 8580. In: Einführung in die Fertigungstechnik, pp. 23–136. Springer Vieweg, Heidelberg (2018). https://doi.org/10.1007/978-3-662-54702-1_2

  30. Stone, R.B., Wood, K.L.: Development of a functional basis for design. J. Mech. Des. Trans. ASME 122, 359–370 (2000). https://doi.org/10.1115/1.1289637

    Article  Google Scholar 

  31. Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L.: A functional basis for engineering design: reconciling and evolving previous efforts. Res. Eng. Des. 13, 65–82 (2002). https://doi.org/10.1007/s00163-001-0008-3

    Article  Google Scholar 

  32. Fleischmann, A., Kannengiesser, U., Schmidt, W., Stary, C.: Subject-oriented modeling and execution of multi-agent business processes. In: Proceedings - 2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2013, pp. 138–145. IEEE Computer Society (2013). https://doi.org/10.1109/WI-IAT.2013.102

  33. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22, 207–216 (1993). https://doi.org/10.1145/170036.170072

    Article  Google Scholar 

  34. Kannengiesser, U., Müller, H.: Industry 4.0 standardisation: where does S-BPM fit? In: S-BPM One 2018: 10th International Conference on Subject-Oriented Business Process Management, Linz, Austria. Association for Computing Machinery (2018). https://doi.org/10.1145/3178248.3178255

  35. Kannengiesser, U., Krenn, F., Kornexl, M., Stary, C.: Testing of networked systems in industry 4.0: an agile, situated approach. In: AUTOMATION – 21. Leitkongress der Mess- und Automatisierungstechnik. VDI Verlag GmbH (2020)

    Google Scholar 

  36. Gero, J.S., Kannengiesser, U.: Towards agent-based product modelling. In: Borg, J.C., Farrugia, P.J., Camilleri, K.P. (eds.) Knowledge Intensive Design Technology. ITIFIP, vol. 136, pp. 3–17. Springer, Boston (2004). https://doi.org/10.1007/978-0-387-35708-9_1

    Chapter  Google Scholar 

Download references

Acknowledgment

The research reported in this paper was funded by the Austrian Research Promotion Agency (FFG) via project no. 874906 (LINK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Kannengiesser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kannengiesser, U., Krenn, F., Stary, C., Höfler, P. (2020). Tindustry: Matchmaking for I4.0 Components. In: Freitag, M., Kinra, A., Kotzab, H., Kreowski, HJ., Thoben, KD. (eds) Subject-Oriented Business Process Management. The Digital Workplace – Nucleus of Transformation. S-BPM ONE 2020. Communications in Computer and Information Science, vol 1278. Springer, Cham. https://doi.org/10.1007/978-3-030-64351-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64351-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64350-8

  • Online ISBN: 978-3-030-64351-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics