Abstract
An approach to semi-automated linear feature extraction from aerial imagery is introduced in which Kohonen’s self-organizing map (SOM) algorithm is integrated with existing GIS data. The SOM belongs to a distinct class of neural networks which is characterized by competitive and unsupervised learning. Using radiometrically classified image pixels as input, appropriate SOM network topologies are modeled to extract underlying spatial structures contained in the input patterns. Coarse-resolution GIS vector data is used for network weight and topology initialization when extracting specific feature components. The Kohonen learning rule updates the synaptic weight vectors of winning neural units that represent 2-D vector shape vertices. Experiments with high-resolution hyperspectral imagery demonstrate a robust ability to extract centerline information when presented with coarse input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Firestone, L., Rupert, S., Meuller, W.: Automated Feature Extraction: The Key to Future Productivity. Photogrammetric Engineering & Remote Sensing. Vol. 62, No. 6. (1996) 671–676
Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics. Vol. 43. (1982) 59–69
Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models, International Journal of Computer Vision, Vol. 1, No. 4. (1988) 321–331
Haykin, S.: Neural Networks. Upper Saddle River, New Jersey, Prentice Hall (1999)
Kohonen, T.: Self-Organizing Maps (2nd Ed.). Springer-Verlag Berlin Heidelberg (1997)
Kohonen, T.: Things You Haven’t Heard about the Self-Organizing Map. Proceedings of the IEEE International Conference on Neural Networks, San Francisco. (1993) 1464–1480
Demuth, H., Beale, M.: Neural Network Toolbox User’s Guide (Version 3.0). The MathWorks, Inc., Natick, MA (1998)
Steinmaus, K.L., Perry E.M., Foote H.P., Petrie, E.M., Wurstner S.K., Irwin D.E., Stephan A.J.: Hyperspectral Landcover Classification for the Yakima Training Center, Yakima, Washington. Pacific Northwest National Laboratory, Richland, Washington. PNNL-11871 (1998)
Langrebe, D.A.: Useful Information from Multispectral Image Data: Another Look. In: Swain, P.H., Davis, S.M.: Chapter 7 of: Remote Sensing: The Quantitative Approach. McGraw-Hill Int., New York (1978)
Eklundh, L., Singh, A.: A Comparative Analysis of Standardized and Unstandardized Principle Components Analysis in Remote Sensing. International Journal of Remote Sensing. Vol. 14, No. 7. (1993) 1359–1370
Jolliffe, I.: Principle Component Analysis. Springer-Verlag, New York (1986)
Tou, J.T., Gonzales, R.C.: Pattern Recognition Principles. Addison-Wesley, Reading, MA (1974)
Rummelhart D.E., McClelland J.L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1. MIT Press, Cambridge, MA (1986)
Specht, D.F.: Probabilistic Neural Networks and the Polynomial Adaline as Complementary Techniques for Classification. IEEE Transactions on Neural Networks. Vol. 1, No. 1. (1990) 111–121
Poggio, T., Girosi, F.: Regularization Algorithms for Learning that are Equivalent to Multilayer Networks. Science, Vol. 247 (1990) 978–982
Walter, V., Fritsch, D.: Automatic Verification of GIS Data Using High Resolution Multispectral Data. In: International Archives of Photogrammetry and Remote Sensing (ISPRS). Vol. 32, Part 3/1. (1998) 485–489
Mckeown, D.A., Harvey, W.A., McDermott, J.: Rule-based Interpretation of Aerial Images. IEEE Transactions on Pattern and Machine Intelligence. Vol. PAMI-7, No. 5. (1985) 570–585
Neuenschwander, W., Fau, P., Szekely, G., Kubler, O.: From Ziplock Snakes to Velcro Surfaces. In: Gruen, A., Kuebler, O., Agouris, P. (eds.): Automated Extraction of Man-Made Objects from Aerial and Space Images. Birkhauser Verlag, Basel Boston Berlin (1995) 105–114
Tsao, E.C.-K., Bezdek, J.C., Pal, N.R. Fuzzy Kohonen Clustering Networks. Pattern Recognition. Vol. 27, No. 5. (1994) 757–764
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doucette, P., Agouris, P., Musavi, M., Stefanidis, A. (1999). Automated Extraction of Linear Features from Aerial Imagery Using Kohonen Learning and GIS Data. In: Agouris, P., Stefanidis, A. (eds) Integrated Spatial Databases. ISD 1999. Lecture Notes in Computer Science, vol 1737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46621-5_2
Download citation
DOI: https://doi.org/10.1007/3-540-46621-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66931-9
Online ISBN: 978-3-540-46621-5
eBook Packages: Springer Book Archive