[go: up one dir, main page]

Skip to main content

An Improved Rectangular Decomposition Algorithm for Imprecise and Uncertain Knowledge Discovery

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1130 Accesses

Abstract

In this paper, we propose a novel improved algorithm for the rectangular decomposition technique for the purpose of performing fuzzy knowledge discovery from large scaled database in a dynamic environment. To demonstrate its effectiveness, we compare the proposed one which is based on the newly derived mathematical properties with those of other methods with respect to the classification rate, the number of rules, and complexity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maddouri, M., Elloumi, S., Jaoua, A.: An Incremental Learning System for Imprecise and Uncertain Knowledge Discovery. Information Sciences 109, 149–164 (1998)

    Article  Google Scholar 

  2. Khcherif, R., Jaoua, A.: Rectangular Decomposition Heuristics for Documentary Databases. Information Sciences 102, 187–202 (1997)

    Article  Google Scholar 

  3. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hochbaum, D.S.: Approximating Clique and Biclique Problems. Journal of Algorithm 29, 174–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Khcherif, R., Gammoudi, M.M., Jaoua, A.: Using difunctional relations in information organization. Information Sciences 125, 153–166 (2000)

    Article  MATH  Google Scholar 

  6. Ishibuchi, H., Nozaki, K., Tanaka, H.: Efficient fuzzy partition of pattern space for classification problems. Fuzzy Sets and Systems 59, 295–304 (1993)

    Article  Google Scholar 

  7. Jang, D.-S., Choi, H.-I.: Automatic Generation of Fuzzy Rules with Fuzzy Associative Memory. In: Proceeding of the ISCA 5th International Conference, pp. 182–186 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, J., Im, Y., Park, D. (2005). An Improved Rectangular Decomposition Algorithm for Imprecise and Uncertain Knowledge Discovery. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_45

Download citation

  • DOI: https://doi.org/10.1007/11539506_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics