[go: up one dir, main page]

Skip to main content
Log in

Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A hypoeutectic CoCrFeNiNbχ system was synthesized to investigate the effect of Nb content on the thermal stability, mechanical properties, and corrosion behaviors. The hypoeutectic CoCrFeNiNbχ alloy, which contained the Laves phase, possessed two-phase eutectic structures. The elevated temperature may have an impact on the stability of the Laves phase. Nanoindentation measurements showed that the Laves phase is much harder than the FCC phase, which could be confirmed by the shallower maximum penetration depth in the typical Ph curve. Furthermore, the plasticity of the Laves phase was characterized by nanoindentation measurements. Compared with the FCC phase, the activation energy of dislocation nucleation in the Laves phase is much higher due to the large atomic size difference and the phase difference. Corrosion and passivation behaviors of CoCrFeNiNbχ were investigated in 3.5% NaCl solution. All the alloys exhibited spontaneous passivity and low current densities in 3.5% NaCl solution. Furthermore, the corrosion potential increased with the increasing Nb content, which indicated that the corrosion resistance enhanced with a higher Nb content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Sun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 5, 299 (2004).

    Article  Google Scholar 

  2. W.R. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).

    Article  CAS  Google Scholar 

  3. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu: Effect of Nb addition on microstructure and mechanical properties of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).

    Article  Google Scholar 

  4. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, and C.W. Tsai: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlχCoCrFeNi (0 ≤ χ ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).

    Article  CAS  Google Scholar 

  5. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  6. Z. Tang, T. Yuan, C.W. Tsai, J.W. Jeh, C.D. Lundin, and P.K. Liaw: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).

    Article  CAS  Google Scholar 

  7. C.Y. Hsu, C.C. Juan, S.T. Chen, T.S. Sheu, J.W. Yeh, and S.K. Chen: Phase diagrams of high-entropy alloy system Al–Co–Cr–Fe–Mo–Ni. J. Miner. Met. Mater. Soc. 65, 1829 (2013).

    Article  CAS  Google Scholar 

  8. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun: Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).

    Article  Google Scholar 

  9. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMoχ alloys. J. Alloys Compd. 497, 52 (2010).

    Article  CAS  Google Scholar 

  10. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  11. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configuration in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  Google Scholar 

  12. C-J. Tong, M-R. Chen, J-W. Yeh, S-J. Lin, S-K. Chen, T-T. Shun, and S-Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  13. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li: A promising new class of high temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    Article  CAS  Google Scholar 

  14. H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, and T.J. Li: Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2017).

    Article  CAS  Google Scholar 

  15. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).

    Article  CAS  Google Scholar 

  16. X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zha: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).

    Article  CAS  Google Scholar 

  17. Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, and T.J. Li: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).

    Article  CAS  Google Scholar 

  18. Ł. Rogal, J. Morgiel, Z. Świątek, and F. Czerwiński: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590 (2016).

    Article  CAS  Google Scholar 

  19. F. He, Z.J. Wang, X.L. Shang, C. Leng, J.J. Li, and J.C. Wang: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).

    Article  CAS  Google Scholar 

  20. F. He, Z. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).

    Article  CAS  Google Scholar 

  21. S.G. Ma and Y. Zhang: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).

    Article  CAS  Google Scholar 

  22. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, and H. Hashem: The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn–6.5Zn–x Cu Pb-free solders. Mater. Des. 80, 152 (2015).

    Article  CAS  Google Scholar 

  23. X. Wang, M.Y. Nie, C.T. Wang, S.C. Wang, and N. Gao: Microhardness and corrosion properties of hypoeutectic Al–7Si alloy processed by high-pressure torsion. Mater. Des. 83, 193 (2015).

    Article  CAS  Google Scholar 

  24. A.E. Ares, L.M. Gassa, C.E. Schvezov, and M.R. Rosenberger: Corrosion and wear resistance of hypoeutectic Zn–Al alloys as a functionof structural features. Mater. Chem. Phys. 136, 394 (2012).

    Article  CAS  Google Scholar 

  25. W.R. Osório, L.C. Peixoto, M.V. Canté, and A. Garcia: Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Mater. Des. 31, 4485 (2010).

    Article  Google Scholar 

  26. Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, and W.Y. Li: Effect and role of alloyed Nb on the air oxidation behavior of Ni–Cr–Fe alloys at 1000 °C. Corros. Sci. 127, 10 (2017).

    Article  CAS  Google Scholar 

  27. K. Li, Y. Li, X. Huang, D. Gibson, Y. Zheng, J. Liu, L. Sun, and Y.Q. Fu: Surface microstructures and corrosion resistance of Ni–Ti–Nb shape memory thin films. Appl. Surf. Sci. 414, 63 (2017).

    Article  CAS  Google Scholar 

  28. M.L. Lethabane, P.A. Olubambi, and H.K. Chikwanda: Corrosion behavior of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment. J. Mater. Res. Technol. 4, 367 (2015).

    Article  CAS  Google Scholar 

  29. L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu: Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng., A 707, 708 (2017).

    Article  CAS  Google Scholar 

  30. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  31. R. Qvarfort: Critical pitting temperature measurements of stainless steels with an improved electrochemical method. Corros. Sci. 29, 987 (1989).

    Article  CAS  Google Scholar 

  32. P. Bommersbach, C. Alemany-Dumont, J.P. Millet, and B. Normand: Formation and behavior study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 1076 (2005).

    Article  CAS  Google Scholar 

  33. A.I. Muñoz, J.G. Antón, J.L. Guiñón, and V.P. Herranz: Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros. Sci. 49, 3200 (2007).

    Article  Google Scholar 

  34. E.E. Ebenso: Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Mater. Chem. Phys. 79, 58 (2003).

    Article  CAS  Google Scholar 

  35. Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2017).

    Article  CAS  Google Scholar 

  36. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  37. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  38. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2006).

    Article  Google Scholar 

  39. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  40. M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini, and G.M. Stocks: Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 2350 (2015).

    Article  CAS  Google Scholar 

  41. Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, and T.J. Li: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).

    Article  CAS  Google Scholar 

  42. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  43. M-H. Tsai, K-Y. Tsai, C-W. Tsai, C. Lee, C-C. Juan, and J-W. Yeh: Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).

    Article  CAS  Google Scholar 

  44. D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, and E.P. George: Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 61, 2953 (2013).

    Article  CAS  Google Scholar 

  45. L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, and T.G. Nieh: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).

    Article  CAS  Google Scholar 

  46. Y.X. Ye, Z.P. Lu, and T.G. Nieh: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).

    Article  CAS  Google Scholar 

  47. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).

    Article  CAS  Google Scholar 

  48. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).

    Article  CAS  Google Scholar 

  49. T.T. Shun, L.Y. Chang, and M.H. Shiu: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

G. Li acknowledges the Basic Research Project in the Hebei Province (Grant No. A2016203382) and the National Science Foundation of China (Grant No. 11674274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Li.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, L., Liaw, P.K. et al. Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys. Journal of Materials Research 33, 3276–3286 (2018). https://doi.org/10.1557/jmr.2018.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.103